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Abstract

This thesis illustrates the existence of minimal surfaces bounded by a prescribed

closed Jordan curve Γ ⊂ R3. Furthermore, it discusses the existence of surfaces

of non-vanishing constant mean curvature H ∈ R bounded by Γ. In the final

chapter it concludes by investigating the boundary behaviour of minimal surfaces

and H-surfaces. It simplifies the discussion of Erhard Heinz and Friedrich Tomi

on the boundary regularity of minimal surfaces and extends their results onto

H-surfaces.
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Chapter 1

Introduction

1.1 Differential Geometrical Consideration

In this section we introduce minimal surfaces by closely following the geometrical

considerations of Stefan Hildebrandt in [13] and Manfredo Perdigao do Carmo

[2]. The aim is to characterise minimal surfaces as critical points of the area

functional.

Let Ω ⊂ R2 be a bounded domain in R2. Let us consider a surface X : Ω̄→ R3 as

a C2-immersion of Ω̄ into R3. For vectors a, b ∈ R3 we denote the scalar product

in the Euclidean space by a · b and the length by |a| =
√
a · a. More generally, we

denote the inner product of a and b by 〈a, b〉. We write X in the form

X(u, v) =
(
X1(u, v), X2(u, v), X3(u, v)

)
,

where w = (u, v) ∈ Ω̄ ⊂ R2. We denote the partial derivatives of X with respect to

u and v as Xu and Xv, respectively. For the gradient of X we write∇X =
(
Xu, Xv

)
with |∇X| = |Xu|2 + |Xv|2.

We define the first fundamental form Ip on the tangent plane Tp(X) of the regular

surface X ⊂ R3 at point p ∈ X by

Ip(w) = 〈w,w〉p = |w|2 ≥ 0,

where 〈w1, w2〉p denotes the inner product of w1, w2 ∈ Tp(X) viewed as vectors
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in R3. Consider a parametrised curve α(t) = X(u(t), v(t)), t ∈ (−ε, ε) for some

ε > 0. Then we can express the first fundamental form in the basis {Xu, Xv} of

Tp(X) with p = α(0) as

Ip(α
′(0)) = 〈α′(0), α′(0)〉p

= 〈Xuu
′ +Xvv

′, Xuu
′ +Xvv

′〉p
= 〈Xu, Xu〉p

(
u′
)2

+ 2〈Xu, Xv〉pu′v′ + 〈Xv, Xv〉p
(
v′
)2

= E
(
u′
)2

+ 2Fu′v′ + G
(
v′
)2
,

where the coefficients of the first fundamental form are given by

E(u(0), v(0)) = 〈Xu, Xu〉p,

F(u(0), v(0)) = 〈Xu, Xv〉p,

G(u(0), v(0)) = 〈Xv, Xv〉p.

Letting p run through a coordinate neighbourhood of X(u, v) we obtain functions

E(u, v), F(u, v), G(u, v) and we write

E = 〈Xu, Xu〉 = |Xu|2,

F = 〈Xu, Xv〉 = |Xu ·Xv|,

G = 〈Xv, Xv〉 = |Xv|2
(1.1)

for the coefficients of the first fundamental form.

The area element dA of X is given by dA = |Xu∧Xv| du dv, where Xu∧Xv denotes

the exterior product of Xu and Xv. Therefore the area functional reads

A(X) =

ˆ
Ω

dA =

ˆ
Ω

|Xu ∧Xv| du dv. (1.2)

Observing that

|Xu ∧Xv|2 + 〈Xu, Xv〉2 = |Xu|2|Xv|2

we write

|Xu ∧Xv| =
√
EG − F2 =:W .

Let S2 := {a ∈ R3
∣∣ |a| = 1} be the 2-sphere. The surface normal of X is the map
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N : Ω̄→ S2 given by

N =
1

W
Xu ∧Xv.

For the parametrised curve α(t) = X(u(t), v(t)), t ∈ (−ε, ε) on X with α(0) = p,

the tangent vector to α(t) at p is α′(0) = Xuu
′+Xvv

′. Moreover, there holds

dN(α′(0)) = Nuu
′ +Nvv

′.

Now we can express the second fundamental form of X in the basis {Xu, Xv}
as

IIp(α
′(0)) = −〈dN(α′(0)), α′(0)〉

= −〈Nuu
′ +Nvv

′, Xuu
′ +Xvv

′〉

= L
(
u′
)2

+ 2Mu′v′ +N
(
v′
)2
,

where
L = −〈Nu, Xu〉 = 〈N,Xuu〉,

M = −〈Nv, Xu〉 = 〈N,Xuv〉 = 〈N,Xvu〉 = −〈Nu, Xv, 〉

N = −〈Nv, Xv〉 = 〈N,Xvv〉,

(1.3)

since 〈N,Xu〉 = 〈N,Xv〉 = 0, confer [2].

Then we can express the mean curvature H of X as

H =
1

2

LG − 2MF +NE
EG − F2

. (1.4)

We now introduce the notion of a variation. Let ε0 > 0. We choose a differentiable

function h : Ω̄ → R. The normal variation of X(Ω̄) determined by h is given by

Z : Ω̄× (−ε0, ε0)→ R3 with

Z(u, v, ε) = X(u, v, ε) + εh(u, v)N(u, v). (1.5)

Fix ε ∈ (−ε0, ε0). Then the map Xε : Ω→ R3,

Xε(u, v) = Z(u, v, ε)
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is a parametrised surface with

Xε
u = Xu + εhNu + εhuN,

Xε
v = Xv + εhNv + εhvN.

For the coefficients of the first fundamental form (1.1) we obtain

Eε = E + 2εh〈Xu, Nu〉+ ε2h2〈Nu, Nu〉+ ε2huhu,

F ε = F + εh
(
〈Xu, Nv〉+ 〈Xv, Nu〉

)
+ ε2h2〈Nu, Nv〉+ ε2huhv,

Gε = G + 2εh〈Xv, Nv〉+ ε2h2〈Nv, Nv〉+ ε2hvhv.

Thus we obtain with (1.3) and (1.4)

EεGε −
(
F ε
)2

= EG − F2 − 2εh
(
EN − 2FM+ GL

)
+R

=
(
EG − F2

)(
1− 4εhH

)
+R,

where limε→0
R
ε

= 0. Hence if ε0 > 0 is sufficiently small, Xε is a regular

parametrised surface with area

A(Xε) =

ˆ
Ω̄

√
EεGε −

(
F ε
)2
du dv

=

ˆ
Ω̄

√(
EG − F2

)√
1− 4εhH +

R(
EG − F2

) du dv.
For small ε0, the functional A is differentiable in ε, and we compute

d

dε
A(Xε)

∣∣∣
ε=0

= −
ˆ

Ω̄

2hH
√(
EG − F2

)
du dv. (1.6)

This is the so called first variation of the area functional (1.2).

We are now led to characterise minimal surfaces properly following [2]. The ob-

servations above imply

Proposition 1.1.1. Let X : Ω̄→ R3 be a regular parametrised surface. Then the

first variation (1.6) of the area functional (1.2) vanishes for all normal variations

(1.5) of X if and only if the mean curvature H (1.4) of X satisfies H = 0.

Proof. If H ≡ 0, then (1.6) implies d
dε
A(ε)

∣∣∣
ε=0

= 0.
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Conversely, assume that the first variation of A vanishes, i.e. d
dε
A(ε)

∣∣∣
ε=0

= 0.

Suppose by contradiction H(q) 6= 0 for some q ∈ Ω. Choose h : Ω̄ → R such

that h(q) = H(q), and h vanishes outside a small neighbourhood of q. Then (1.6)

implies d
dε
A(ε)

∣∣∣
ε=0

< 0 for the normal variation determined by this h, contradicting

the assumption.

In other words, for a surface X of vanishing mean curvature there holds that X(Ω̄)

is a critical point of the area functional A for any normal variation of X(Ω̄). This

motivates the following definition [13].

Definition 1.1.1 (Minimal Surface). A C2-immersion X : Ω→ R3 of a parameter

domain Ω ⊂ R2 is a minimal surface if its mean curvature H (1.4) satisfies H = 0.

1.2 Euler–Lagrange Equations

In this section, we derive the Euler–Lagrange equation for the area functional (1.2)

introduced above. To this end, let Ω ⊂ R2 be a domain in R2. Let us consider a

surface X : Ω̄→ R3 such that X is described as a graph of a function w : Ω̄→ R
of class C2, that is

X(u, v) = (u, v, w(u, v)), (u, v) ∈ Ω.

Then

|Xu ∧Xv| =
√

1 + |∇w|2,

and therefore the area functional (1.2) reads

A(X) =

ˆ
Ω

dA =

ˆ
Ω

|Xu ∧Xv| du dv =

ˆ
Ω

√
1 + |∇w|2 dw =: A(w).
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We will now derive the minimal surface equation [27], by looking for a surface min-

imising the area functional. For this purpose let ϕ ∈ C∞c (Ω). We compute

0 =
d

dε
A(w + εϕ)

∣∣∣
ε=0

=

ˆ
Ω

∇w + ε∇ϕ√
1 + |∇w + ε∇ϕ|2

∇ϕdw
∣∣∣
ε=0

=

ˆ
Ω

∇w∇ϕ√
1 + |∇w|2

dw

= −
ˆ

Ω

∇ ·
( ∇w√

1 + |∇w|2
)
ϕdw

where we used integration by parts in the last step. Therefrom we infer that w is

stationary for A if and only if

∇ ·
( ∇w√

1 + |∇w|2
)

= 0 in Ω. (1.7)

Equation (1.7) is the Euler–Lagrange equation for the non-parametric area func-

tional A. Equivalently,

wuu + wvv −
wuuw

2
u + 2wuvwuwv + wvvw

2
v

1 + w2
u + w2

v

= 0,

or

(1 + w2
v)wuu − 2wuvwuwv + (1 + w2

u)wvv = 0. (1.8)

Equation (1.8) is the minimal surface equation. The surface X is minimal, i.e. is

a critical point of A(X) if and only if w is a critical point of A(w), i.e. if and only

if w solves (1.8), see [13].

1.3 Generalised Minimal Surfaces

With Hildebrandt’s reasoning in [13], we arrive at the following theorem.

Theorem 1.3.1. Any C2-immersion X : Ω→ R3 of vanishing mean curvature is

equivalent to an immersed surface represented by conformal parameters, i.e. there

exists a diffeomorphism ϕ : Ω → Ω∗ onto some simply connected domain Ω∗ with

inverse ψ : Ω∗ → Ω such that Y (u, v) := X(ψ(u, v)) satisfies the conformality
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relations

|Yu|2 = |Yv|2, Yu · Yv = 0. (1.9)

We will not discuss the proof here. The theorem shall only elucidate that it suffices

to consider surfaces X : Ω→ R3 of class C2 satisfying

|Xu|2 = |Xv|2, Xu ·Xv = 0. (1.10)

For these surfaces we find

Theorem 1.3.2. An immersion X ∈ C2(Ω,R3) with (1.10) satisfies

∆X = 2HXu ∧Xv,

where ∆X = Xuu +Xvv denotes the Laplacian.

Proof. Note that (1.1) implies that (1.10) is equivalent to E = G and F = 0. This

means for the mean curvature (1.4)

H =
L+N

2E
=
〈Xuu, N〉+ 〈Xvv, N〉

2E
=
〈∆X,N〉

2E
. (1.11)

On the other hand, by differentiating (1.10) in u and v we obtain

〈Xu, Xuu〉 = 〈Xv, Xvu〉,

〈Xu, Xuv〉 = 〈Xv, Xvv〉,

〈Xuv, Xv〉+ 〈Xu, Xvv〉 = 0,

〈Xuu, Xv〉+ 〈Xu, Xvu〉 = 0.

Thus by symmetry of the scalar product and using Schwarz’s theorem to exchange

the order of the partial derivatives we find

〈Xu,∆X〉 = 0,

〈Xv,∆X〉 = 0,

i.e. ∆X is perpendicular to both Xu and Xv. Furthermore, (1.10) gives

|Xu ∧Xv| =
√
EG − F2 = E .
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Thus Xu ∧Xv = 〈E , N〉. Combining this with (1.11) we conclude

∆X = 2H〈E , N〉 = 2HXu ∧Xv.

Theorem 1.3.2 directly implies

Corollary 1.3.2.1. A conformal C2-immersion X : Ω→ R3 is a minimal surface

if and only if X is harmonic.

This corollary concludes the introductory section.
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Chapter 2

Two Boundary Value Problems

2.1 Minimal Surfaces

Minimal surfaces arise as solutions to Plateau’s problem, named after the Belgian

mathematician Joseph Plateau, whose experiments with soap in 1873 would entail

a challenge for mathematicians in the subsequent century to determine a mathe-

matical formulation to describe them. By forming a frame of iron wire and dipping

it into soap liquid Plateau formed a film, the figure of which was the surface of

least area which has the frame for its boundary [18]. Mathematically, in Plateau’s

experiment, the wire corresponds to a closed Jordan curve of finite length, and

the soap film to a two-dimensional surface in the Euclidean space R3. The soap

film in stable equilibrium corresponds to a surface of least area. Plateau’s prob-

lem consists of finding a disc-type minimal surface of least area spanning a closed

simple curve.

Note that a regular surface of least area has vanishing mean curvature, hence it

is a minimal surface. Instead of finding an absolute minimiser of the area, we

can more generally look for minimal surfaces spanning a closed simple curve. The

latter corresponds to determining stationary points of the area functional [13],

the existence of which was first proved by Jesse Douglas [4] and Tibor Radò [24]

in 1930. In this section we will establish the existence of solutions to Plateau’s

problem following the approach of minimising area amongst surfaces given as maps
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from a two-dimensional parameter domain into R3. We follow Richard Courant’s

[3] simplification of Douglas’s proof.

2.1.1 The Classical Plateau Problem

We will restrict our considerations to surfaces X ∈ C0(B̄;R3) parametrised on the

closure of the unit disc

B = {w = (u, v) ∈ R2
∣∣ u2 + v2 < 1}.

The space C0(B̄;R3) denotes the space of continuous functions mapping the do-

main B̄ into R3. For later reference, we introduce the spaces Cm(Ω;Rn) of m-times

continuously differentiable functions from some open domain Ω ⊂ Rd into Rn for

some d, n ∈ N. We set C∞(Ω;Rn) :=
⋂∞
k=1C

k(Ω;Rn) and the space of vectors

z : Ω → Rn of class C∞ with compact support is denoted by C∞c (Ω;Rn). We

equip these spaces with the usual supremum norm

‖z‖C0(Ω;Rn) := sup
w∈Ω
|z(w)|,

‖z‖Cm(Ω;Rn) :=
∑
|α|≤m

‖Dαz‖C0(Ω;Rn)

for z : Ω → Rn. Moreover, we denote by H1(Ω;Rn) the Sobolev space of square-

integrable functions z : Ω → Rn, whose first distributional derivatives are again

in L2(Ω;Rn). We denote the L2-norm, the H1-seminorm and the H1-norm on Ω

by

‖z‖2
L2(Ω;Rn) =

ˆ
Ω

|z|2 dw,

|z|2H1(Ω;Rn) = ‖z‖2
H1

0 (Ω) =

ˆ
Ω

|∇z|2 dw,

‖z‖2
H1(Ω;Rn) = ‖z‖2

L2(Ω) + ‖z‖2
H1

0 (Ω) =

ˆ
Ω

(|z|2 + |∇z|2) dw,

respectively. We let H1
0 (Ω;Rn) be the completion of the space of compactly sup-

ported smooth functions C∞c (Ω;Rn) with respect to the H1-norm. For all consid-
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erations on the unit disc B ⊂ R3 we abbreviate

‖z‖2
L2 = ‖z‖2

L2(B;R3),

|z|2H1 = |z|2H1(B;R3),

‖z‖2
H1 = ‖z‖2

H1(B;R3).

We recall that all z ∈ H1(B;R3) have a well-defined trace z 7→ z|∂B ∈ L2(∂B),

confer Satz 8.4.3 in [30]. Finally for 1 ≤ p < ∞ we introduce the general Lp-

norms

‖z‖pLp(Ω;Rn) =

ˆ
Ω

|z|p dw,

and in the case of p =∞ we set

‖z‖L∞(Ω;Rn) = inf{C ≥ 0 | |z(w)| ≤ C for a.e. w ∈ Ω}.

Now let Γ ⊂ R3 be a closed Jordan curve, i.e. Γ is homeomorphic to the boundary

of the disc ∂B. A surface X ∈ C0(B̄;R3) solves Plateau’s problem for Γ, if

its restriction to B is a minimal surface (Definition 1.1.1), and if it maps ∂B

topologically onto Γ.

We have seen in Chapter 1 that minimal surfaces are critical points of the area

functional

A(X) =

ˆ
B

|Xu ∧Xv| dw. (2.1)

Therefore, it seems tempting to find minimal surfaces by minimising the area

functional over a suitable class of surfaces. Note, however, that the area functional

is invariant under changes of parametrisation, i.e.

A(X ◦ τ) = A(X) (2.2)

for all diffeomorphisms τ of B̄. Therefore, any attempt at minimising A is prone

to fail, for the invariance of A under any diffeomorphism prevents to distinguish

particular parametrisations of a surface X [31].

Instead we consider the Dirichlet integral over B

D(X) =
1

2

ˆ
B

(
|Xu|2 + |Xv|2

)
dw. (2.3)

11



We remark that the Dirichlet functional is invariant under conformal diffeomor-

phisms of B̄ [31], i.e. for diffeomorphisms τ such that

|τu|2 = |τv|2, τu · τv = 0 in B̄,

there holds

D(X ◦ τ) = D(X) ∀X ∈ H1(B;R3). (2.4)

We derive a relation between A and D as follows. Let a, b ∈ R3 be arbitrary

vectors. There holds

|a ∧ b| ≤ |a||b| ≤ 1

2
|a|2 +

1

2
|b|2, (2.5)

where we used Young’s inequality (Lemma 3.5.1 in [28]). Equality holds in (2.5)

if and only if a is perpendicular to b and |a| = |b|, see [13]. Now suppose

X ∈ C1(B;R3) admits a finite Dirichlet integral (2.3). Equation (2.5) directly

implies

A(X) ≤ D(X) (2.6)

with equality if and only if Xu·Xv = 0 and |Xu|2 = |Xv|2 in B. This means that the

area functional coincides with Dirichlet’s functional on conformally parametrised

surfaces [13].

For the converse we have the following statement by Morrey [20].

Theorem 2.1.1. Let X ∈ H1(B;R3). Then for every ε > 0 there exists a diffeo-

morphism τε : B → B such that Zε := X ◦ τε satisfies

D(Zε) ≤ A(Zε) + ε = A(X) + ε,

where the latter equality follows by invariance of A under change of parametrisation

(2.2).

For a proof we refer to Theorem 1.2 in [20]. Before discussing the implications of

Morrey’s result we will introduce Plateau’s problem more rigourously.

Definition 2.1.1 (Disc-type solution to Plateau’s problem for Γ). Given a closed

Jordan curve Γ ⊂ R3, the surface X : B̄ → R3 is a disc-type solution to Plateau’s

problem for Γ if
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i. X ∈ C2(B;R3) ∩ C0(B̄;R3),

ii. X satisfies a system of nonlinear differential equations

∆X = 0 in B (2.7)

|Xu|2 = |Xv|2, Xu ·Xv = 0 in B, (2.8)

iii. with boundary conditions

X|∂B : ∂B → Γ is a homeomorphism from ∂B onto Γ. (2.9)

Condition iii. in Definition 2.1.1 is equivalent to demanding that the restriction

X|∂B is a continuous and strictly monotonic map. Note that uniform limits of

strictly monotonic functions may be merely weakly monotonic [13], that is

Definition 2.1.2 (Weakly monotonic map). Let Γ ⊂ R3 be a closed Jordan curve,

let ϕ : ∂B → Γ be a homeomorphism. Then a continuous map ψ : ∂B → Γ is

weakly monotonic, if there exists an increasing continuous function τ : [0, 2π]→ R
with τ(0) = 0, τ(2π) = 2π, such that

ψ(eiθ) = ϕ(eiτ(θ)), 0 ≤ θ ≤ 2π.

Intuitively, this means that points w traversing ∂B in a constant direction will be

mapped onto image points ψ(w) traversing Γ in a constant direction. With this in-

tuition we understand that weak monotonicity is closed under uniform convergence

[13], that is

Lemma 2.1.2. Assume a sequence
(
ψn
)
n∈N of continuous, weakly monotonic maps

from ∂B onto a closed Jordan curve Γ converges uniformly to some map ψ : ∂B →
R3. Then ψ is a continuous, weakly monotonic map from ∂B onto Γ.

2.1.2 Variational Formulation

We are now in the position to introduce the class of admissible functions for solu-

tions to Plateau’s problem.
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Definition 2.1.3 (Class of admissible functions). Let Γ ⊂ R3 be a closed Jordan

curve. The class of admissible functions C(Γ) is defined as

C(Γ) := {X ∈ H1(B;R3) | X|∂B is represented

by a continuous, weakly monotonic map ψ : ∂B → Γ}.
(2.10)

With this definition, we can combine (2.6) with Morrey’s result 2.1.1 to infer

inf
X∈C(Γ)

A(X) = inf
X∈C(Γ)

D(X). (2.11)

Indeed, infX∈C(Γ)A(X) ≤ infX∈C(Γ)D(X) follows directly by (2.6). Conversely, let

X ∈ H1(B;R3) and let ε > 0. Then there exist diffeomorphisms τε mapping B

onto itself, so that D(X ◦ τε) ≤ A(X) + ε. Thus

inf
X∈C(Γ)

D(X) ≤ D(X ◦ τε) ≤ A(X) + ε.

Taking the limit ε→ 0 proves the claim.

Morrey’s result justifies why it suffices to minimise Dirichlet’s integral for the

purpose of minimising the area over C(Γ), for a minimiser of Dirichlet’s integral

in C(Γ) also minimises the area functional among all surfaces in C(Γ). Therefore

the variational problem P(Γ) associated to Plateau’s problem for a given curve Γ

reads

Minimise D(X) in the class C(Γ). (P(Γ))

Equivalently, we want to find X0 ∈ C(Γ) such that

D(X0) = inf
X∈C(Γ)

D(X) =: e(Γ) ≥ 0. (2.12)

In order to solve the variational problem (P(Γ)) we employ the direct method in

the calculus of variations.

2.1.3 Calculus of Variations

This subsection follows Michael Struwe [30]. Let (H, ‖ · ‖) be a Hilbert space with

subset M ⊂ H, and consider a functional F : M → R.
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Definition 2.1.4. F is weakly sequentially lower semi-continuous at x0 ∈ M if

there holds

∀
(
xk
)
k∈N ⊂M : xk

w−→ x0 =⇒ F (x0) ≤ lim inf
k→∞

F (xk), (2.13)

where
w−→ denotes weak convergence.

Definition 2.1.5. F is coercive on M if there holds

∀
(
xk
)
k∈N ⊂M : ‖xk‖ → ∞ (k →∞) =⇒ F (xk)→∞ (k →∞). (2.14)

With these definitions at hand we can introduce the variational principle.

Theorem 2.1.3 (Variational Principle). Suppose M 6= ∅ is a weakly sequentially

closed subset of H, and suppose that F : M → R is weakly sequentially lower

semi-continuous and coercive on M . Then there exists an x0 ∈M with

F (x0) = inf
x∈M

F (x) =: α0 > −∞.

Proof. Consider a minimising sequence, that is a sequence
(
xk
)
k∈N ⊂ M with

F (xk)→ infx∈M F (x), where we note that infx∈M F (x) > −∞ since M is assumed

to be non-empty. Since F is coercive (2.14),
(
xk
)
k∈N is bounded. But H is a

Hilbert space, and as such is reflexive. Therefore, by Eberlein–Šmulian’s theorem

(Satz 5.3.2 in [30]) there exists a weakly convergent subsequence of
(
xk
)
k∈N, which

we again denote by
(
xk
)
k∈N, with xk

w−→ x0. Since M is weakly sequentially closed,

we have that x0 ∈ M . By weak sequential lower semi-continuity of F (2.13), we

conclude for the subsequence
(
xk
)
k∈N that

α0 ≤ F (x0) ≤ lim inf
k→∞

F (xk) = inf
x∈M

F (x) = α0.

15



2.1.4 Three-Point Condition

Reconsidering the concrete problem (P(Γ)), the previous subsection implies that

we have to find a minimising sequence whose boundary values contain a uniformly

converging subsequence [13]. Note, however, that the set C(Γ) defined in (2.10)

is not weakly closed [31]. To recover the requirements of Theorem 2.1.3, we fix

three distinct points P1, P2, P3 on ∂B and three distinct points Q1, Q2, Q3 on Γ.

We define

C∗(Γ) := {X ∈ C(Γ)
∣∣ X(Pj) = Qj, j = 1, 2, 3}. (2.15)

This is well-defined by the action of the conformal group of the disc on C(Γ), confer

Struwe [31]. We set

e∗(Γ) := inf
X∈C∗(Γ)

D(X). (2.16)

Since C∗(Γ) ⊂ C(Γ), we have e(Γ) ≤ e∗(Γ), where e(Γ) is as in (2.12). On the

other hand, if X ∈ C(Γ), then there exist three distinct points ζ1, ζ2, ζ3 on ∂B such

that

X(ζj) = Qj, j = 1, 2, 3.

Let σ : B̄ → B̄ be a conformal map such that σ(Pj) = ζj, j = 1, 2, 3. Then

Y := X ◦ σ ∈ C∗(Γ), and due to the conformal invariance of D (2.4) there holds

D(Y ) = D(X). Hence we even obtain

e(Γ) = e∗(Γ). (2.17)

Consequently, the variational problem

Minimise D(X) in the class C∗(Γ). (P∗(Γ))

is equivalent to (P(Γ)). But by imposing the three-point-condition we have gained

an important compactness property for the boundary values.

2.1.5 Non-emptiness

The subset M in Theorem 2.1.3 is required to be non-empty. To achieve this, we

follow Hildebrandt [13]. We let ϕ : ∂B → Γ be a homeomorphism representing Γ
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with Fourier expansion

ϕ(eiθ) =
A0

2
+
∞∑
k=1

Ak cos(kθ) +Bk sin(kθ),

where Ak, Bk ∈ R3, k ∈ N. Note that the Fourier expansion converges in

L2([0, 2π];R3). Assume ϕ satisfies the three-point-condition

ϕ(Pj) = Qj, j = 1, 2, 3.

Set

X(w) =
A0

2
+
∞∑
k=1

ρk
(
Ak cos(kθ) +Bk sin(kθ)

)
,

with polar coordinates w = ρeiθ. Then X is harmonic, X|∂B = ϕ, and

D(X) =
1

2

ˆ
B

|∇X|2 dw

=
1

2

ˆ
B

∣∣∣ ∞∑
k=1

(
kρk−1(Ak cos(kθ) +Bk sin(kθ)

)
+

1

ρ
ρkk(−Ak sin(kθ) +Bk cos(kθ)

))∣∣∣2 dw
=

1

2

ˆ
B

∞∑
k=1

k2ρ2(k−1)
(
|Ak|2 + |Bk|2

)
dw

=
1

2

∞∑
k=1

k2
(
|Ak|2 + |Bk|2

) ˆ 2π

0

ˆ 1

0

ρ2k−1dρdθ

=
π

2

∞∑
k=1

k
(
|Ak|2 + |Bk|2

)
.

As a consequence, we see that X is of class H1(B;R3) if and only if

∞∑
k=1

k
(
|Ak|2 + |Bk|2

)
<∞. (2.18)

In this case X ∈ C∗(Γ), i.e. C∗(Γ) 6= ∅. Now, if φ(θ) := ϕ(eiθ) is Lipschitz

continuous, then its derivative is bounded and thus also square-integrable. But

this implies that (2.18) is satisfied, which in turn implies that C∗(Γ) and C(Γ) are
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non-empty. We conclude that C∗(Γ) is non-empty if Γ is rectifiable.

2.1.6 Courant–Lebesgue Lemma

There is a final argument missing for the existence proof of Plateau’s problem,

known as the Courant–Lebesgue Lemma [3].

Lemma 2.1.4 (Courant–Lebesgue). Let X ∈ H1(B;R3). For any w ∈ B̄ we

denote

Cr = Cr(w) = B̄ ∩ ∂Br(w),

and we let s be the arc length of Cr. Then for any 0 < δ < 1 there exists ρ with

δ ≤ ρ ≤
√
δ such that Xs ∈ L2(Cρ) and

ˆ
Cρ

|Xs|2ds ≤
4D(X)

ρ| ln ρ|
.

The reasoning in the proof follows Struwe [31].

Proof. We can estimate

ˆ √δ
δ

ˆ
Cρ

|Xs|2dsdρ ≤
ˆ(

B√δ(w)\Bδ(w)
)
∩B
|∇X|2 dw ≤ 2D(X).

Moreover the left hand side can be bounded from below by

ess inf
δ≤ρ≤

√
δ

(
ρ

ˆ
Cρ

|Xs|2ds
)ˆ √δ

δ

1

ρ
dρ ≤

ˆ √δ
δ

ˆ
Cρ

|Xs|2ds.

But for all ρ with δ ≤ ρ ≤
√
δ there holds

ˆ √δ
δ

1

ρ
dρ =

1

2
| ln δ| ≥ 1

2
| ln ρ|,

Thus we can find ρ ∈ [δ,
√
δ] such that

ˆ √δ
δ

ˆ
Cρ

|Xs|2ds ≤
4D(X)

ρ| ln ρ|
.

18



The Courant–Lebesgue Lemma furnishes an argument to prove the following equicon-

tinuity property [31].

Lemma 2.1.5. Let X ∈ C∗(Γ) as defined in (2.15) with bounded Dirichlet integral

D(X) ≤ M for some 0 ≤ M < ∞. Let ε > 0 and w0 ∈ ∂B. Then there exists

δ > 0 with δ = δ(ε,D(X),Γ, Q1, Q2, Q3) and Qj, j = 1, 2, 3, from (2.15) such that

for all w ∈ ∂B there holds

|X(w)−X(w0)| < 2ε (2.19)

if |w − w0| < δ.

This statement is equivalent to the equicontinuity of subsets in C∗(Γ) whose Dirich-

let integral is uniformly bounded. By the Arzelà–Ascoli theorem (Satz 6.3.1 in [30])

this is equivalent to the compactness of the injection C∗(Γ) → C0(∂B;R3). The

proof follows the reasoning of Struwe [31].

Proof. Let δ0 > 0 be sufficiently small, so that any ball of radius
√
δ0 contains

at most one of the points Pj, j = 1, 2, 3 from the three-point-condition in (2.15).

Choose ε0 > 0 so that any ball of radius ε0 contains at most one of the points

Qj, j = 1, 2, 3. We may assume ε < ε0. Then choose ε1 with 0 < ε1 < ε < ε0

such that for any two points Y1, Y2 ∈ Γ contained in a ball of radius ε1 there is a

subarc Γ̃ ⊂ Γ with endpoints Y1 and Y2 contained in a ball of radius ε. Note that

this is possible since Γ is a Jordan curve. By choice of ε0, for two points Y1, Y2

with |Y1− Y2| < ε1 the subarc Γ̃ connecting Y1 with Y2 is unique, characterised by

the condition that Γ̃ contains at most one Qj, j = 1, 2, 3.

Choose a maximal δ with 0 < δ ≤ δ0 so that

| ln δ| ≥ 8πD(X)

ε2
1

.

Choose ρ ∈ [δ,
√
δ] and Cρ(w0) according to the Courant–Lebesgue Lemma 2.1.4

so that ˆ
Cρ

|Xs|2ds ≤
4D(X)

ρ| ln ρ|
.
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Let wj, j = 1, 2 be the points of intersection of Cρ with ∂B and denote by C̃ρ =

Bρ(w0) ∩ ∂B the subarc of ∂B with endpoints w1 and w2. By choice of δ0, δ and

ρ we note that C̃ρ contains at most one Pj, j = 1, 2, 3. Let Xj = X(wj), j = 1, 2,

and let Γ̃ be the subarc of Γ connecting X1 with X2. By monotonicity there holds

X(C̃ρ) = Γ̃. Moreover, by choice of Cρ, with Hölder’s inequality (p. 145 in [6]),

by Courant–Lebesgue’s Lemma and by choice of ρ and δ we find

|X1 −X2|2 ≤
(ˆ

Cρ

|Xs|ds
)2

≤ πρ

ˆ
Cρ

|Xs|2ds ≤
4πD(X)

| ln ρ|
≤ 8πD(X)

| ln δ|
≤ ε2

1.

Thus we note that Γ̃ connecting X1 with X2 contains at most one of the points

Qj, j = 1, 2, 3, and Γ̃ is contained in a ball of radius ε. In particular for w0 and

any w ∈ ∂B ∩Bδ(w0) ⊂ C̃ρ there holds

|X(w)−X(w0)| ≤ 2ε,

since X(w), X(w0) ∈ Γ̃ are both contained in a ball of radius ε. But this yields

the claim, for δ = δ(D(X), ε1) and ε1 = ε1(D(X), ε,Γ, Q1, Q2, Q3).

This equicontinuity property now yields weak closedness of C∗(Γ).

Lemma 2.1.6. C∗(Γ) as defined in (2.15) is closed with respect to the weak topology

in H1(B;R3).

Proof. Let
(
Xn

)
n∈N ⊂ C

∗(Γ) be such that Xn
w−→ X converges weakly in H1(B;R3).

By weak convergence,
(
Xn

)
n∈N is bounded in H1(B;R3) (Satz 4.6.1 in [30]); in

particular,

D(Xn) ≤M

uniformly in n for some M ∈ R. Lemma 2.1.5 implies uniform convergence of a

subsequence Xn → X on ∂B. Thus X ∈ C0(∂B) ∩H1(B;R3), satisfies the three-

point condition, and by Lemma 2.1.2 X maps ∂B weakly monotonically onto Γ.

Thus X ∈ C∗(Γ).

2.1.7 Existence

We now state the existence theorem [13] due to Douglas and Radò.
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Theorem 2.1.7. Let Γ ⊂ R3 be a closed Jordan curve. If C(Γ) defined in (2.10)

is nonempty, then the variational problem (P(Γ)) has at least one solution. In

particular, (P(Γ)) has a solution for every rectifiable curve Γ.

Proof. We will need the following two statements for the proof.

Claim 2.1.7.1. The functional D (2.3) is coercive (2.14) on C(Γ).

Proof of Claim 2.1.7.1. Let X ∈ C(Γ). Consider a harmonic Y ∈ H1(B;R3) ∩
L∞(∂B;R3) satisfying Y |∂B = X|∂B. Then there holds X − Y ∈ H1

0 (B;R3). Thus

we can estimate with Poincaré’s inequality [6]

‖X − Y ‖2
L2(B;R3) ≤ C‖∇(X − Y )‖2

L2(B;R3). (2.20)

Note that integration by parts gives by choice of Y

ˆ
B

|∇(X − Y )|2 dw = −
ˆ
B

(X − Y )∆X dw

=

ˆ
B

∇(X − Y )∇X dw

= −
ˆ
B

∆X ·X dw

=

ˆ
B

|∇X|2 dw.

Therefore by the triangle inequality and by (2.20) we obtain

‖X‖2
L2(B;R3) − ‖Y ‖2

L2(B;R3) ≤ ‖X − Y ‖2
L2(B;R3) ≤ C‖∇X‖2

L2(B;R3).

We can rearrange and apply Hölder’s inequality and the maximum principle for

harmonic functions [19] to find

‖X‖2
L2(B;R3) ≤ C‖∇X‖2

L2(B;R3) + C‖Y ‖2
L∞(B;R3)

= C‖∇X‖2
L2(B;R3) + C‖Y ‖2

L∞(∂B;R3)

= C‖∇X‖2
L2(B;R3) + C‖X‖2

L∞(∂B;R3),

where the last equality is due to the choice of Y . But by definition of C(Γ) (2.10)
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there holds X|∂B ∈ C0(∂B;R3). Thus in view of (2.3) we conclude

‖X‖2
H1(B;R3) = ‖X‖2

L2(B;R3) + ‖∇X‖2
L2(B;R3)

≤ C‖∇X‖2
L2(B;R3) + C‖X‖2

L∞(∂B;R3)

≤ CD(X).

Moreover we claim

Claim 2.1.7.2. The functional D (2.3) is weakly sequentially lower

semi-continuous (2.13) on H1(B;R3).

Proof of Claim 2.1.7.2. We write for X, Y ∈ H1(B;R3)

D(X, Y ) :=
1

2

ˆ
B

∇X · ∇Y dw,

so that D(X,X) = D(X) as defined in (2.3). Then we note that D is a bilinear

functional on the Hilbert space H1(B;R3). Thus we find for a weakly convergent

sequence Xn
w−→ X,

0 ≤ D(Xn −X) = D(Xn −X,Xn −X) = D(Xn)−D(X)− 2D(X,Xn −X).

ButD(X, ·) is a continuous linear functional; thus by weak convergence of
(
Xn

)
n∈N,

we find D(X,Xn − X) → 0 as (n → ∞). This proves the weak sequential lower

semi-continuity of D.

Now note that C∗(Γ) ⊂ H1(B;R3) is non-empty, either by assumption, or else since

Γ is rectifiable, see Section 2.1.5. Moreover C∗(Γ) is weakly closed in H1(B;R3)

by Lemma 2.1.6. Finally, Claim 2.1.7.1 implies in particular that D is coercive

on C∗(Γ), and Claim 2.1.7.2 yields weak sequential lower semi-continuity of D on

C∗(Γ). Therefore Theorem 2.1.3 applies and we obtain that there exists X ∈ C∗(Γ)

such that

D(X) = e∗(Γ).

Finally, note that by (2.17) we have e∗(Γ) = e(Γ), i.e. X solves (P(Γ)).
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2.1.8 Harmonicity

We now derive harmonicity of solutions X of (P(Γ)) by means of variations of the

surface or outer variations following Struwe [31].

Lemma 2.1.8. Let X ∈ C(Γ) (2.10). Then there holds for the Dirichlet functional

(2.3)
d

dε
D(X + εϕ)

∣∣∣
ε=0

= 0 ∀ϕ ∈ H1
0 (B;R3), (2.21)

if and only if

∆X = 0 in B. (2.22)

Proof. We compute for all ϕ ∈ H1
0 (B;R3)

d

dε
D(X + εϕ)

∣∣∣
ε=0

=
d

dε

(1

2

ˆ
B

|∇X + ε∇ϕ|2 dw
)∣∣∣

ε=0
=

ˆ
B

∇X∇ϕdw. (2.23)

Thus if (2.21) holds, then

0 =

ˆ
B

∇X∇ϕdw, ∀ϕ ∈ H1
0 (B;R3).

Hence, X weakly solves (2.22). By Weyl’s Lemma (Lemma 2 in [35]), X ∈
C2(B;R3) and (2.22) holds in a classical sense.

Conversely, if ∆X = 0, then for all ϕ ∈ H1
0 (B;R3)

0 = −
ˆ
B

∆Xϕdw =

ˆ
B

∇X∇ϕdw =
d

dε
D(X + εϕ)

∣∣∣
ε=0

where we integrated by parts and used (2.23).

2.1.9 Conformality

We finally want to show that any solution of the variational problem (P(Γ)) satis-

fies the conformality relations (2.8). To this end we introduce the technicalities for

variations of the parametrisation of X or inner variations. We follow Hildebrandt’s

explanations [13].
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Let λ = (µ, ν) be an arbitrary vector field on B̄ of class C1(B̄;R2). We may

assume that λ is defined on all of R2, so that λ ∈ C1(R2;R2). We introduce a

one-parameter family τε : R2 → R2, given by

τε(w) = τ(w, ε) = w − ελ(w).

Then τ ∈ C1(R2 × R;R2). Let B0 be some open set compactly containing B,

a relation which we denote by B ⊂⊂ B0. Since τε is just a perturbation of the

identity, we see that τε : B0 → τε(B0) maps B0 diffeomorphically onto τε(B0)

if ε ∈ (−ε0, ε0) for sufficiently small ε0 > 0. Therefore, the inverse σε := τ−1
ε

exists on some domain Ω where τε(B) ⊂⊂ Ω ⊂⊂ B0. To be precise, we let

ω = τε(w) = τ(w, ε) and w = σε(ω) = σ(ω, ε). Then σ ∈ C1(Ω× (−ε0, ε0); B̄) and

there holds

σ(ω, ε) = ω + ελ(ω), τ(σ(ω, ε), ε) = ω, ∀(ω, ε) ∈ Ω× (−ε0, ε0).

Restricting τε to B̄ and σε to τε(B̄) we obtain a diffeomorphism τε : B̄ → τε(B̄)

with inverse σε satisfying

τ0(B) = B, σ0(w) = w,
∂

∂ε
σ(w, ε)

∣∣
ε=0

= λ(w) for w ∈ B̄.

Moreover, we have

∇τε = id− ε∇λ,

and thus

det(∇τε) = 1− ε
(
µu + νv

)
. (2.24)

Now let X ∈ C1(B̄;R3), and define Zε := X ◦ σε : τε(B̄)→ R3. To emphasise the

domain, we denote the Dirichlet integral over B with DB. We define

Definition 2.1.6 (First inner variation). The first inner variation of the Dirichlet

integral DB at X in direction of λ = (µ, ν) ∈ C1(R2;R2) is defined as

∂DB(X,λ) :=
d

dε
Dτε(B)(X ◦ σε)

∣∣
ε=0

,

where Dτε(B) represents the Dirichlet integral over τε(B).
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Based on Definition 2.1.6 we find for any λ = (µ, ν) ∈ C1(B̄;R2)

∂DB(X,λ) =
d

dε
Dτε(B)(X ◦ σε)

∣∣
ε=0

=
d

dε

(1

2

ˆ
τε(B)

|∇(X ◦ σε)|2dω
)∣∣∣

ε=0

=
1

2

d

dε

ˆ
τε(B)

|
(
∇(X) ◦ σε

)
· ∇σε|2dω

∣∣∣
ε=0

=
1

2

d

dε

ˆ
B

|∇X ·
(
(∇σε) ◦ τε

)
|2 det(∇τε) dw

∣∣∣
ε=0

.

(2.25)

Moreover there holds by the chain rule

id = ∇(id) = ∇(σε ◦ τε) =
(
(∇σε) ◦ τε

)
◦ ∇ τε,

and thus (
(∇σε) ◦ τε

)
= (∇ τε)

−1 = (id− ε∇λ)−1.

But this inverse is given by the Neumann series

(
(∇σε) ◦ τε

)
= (id− ε∇λ)−1 =

∞∑
k=0

(
ε∇λ

)k
(2.26)

which converges for small ε, see Beispiel 2.2.2 ii) in [30]. Therefore we obtain from

(2.25) with (2.24) and (2.26)

∂DB(X,λ)

=
1

2

d

dε

ˆ
B

(
|∇X|2 + 2ε(∇X)T∇λ∇X +O(ε2)

)
det(∇τε) dw

∣∣∣
ε=0

=
1

2

ˆ
B

(
2(∇X)T · ∇λ · ∇X − |∇X|2

(
µu + νv

))
dw

=

ˆ
B

(
|Xu|2µu + |Xv|2νv +Xu ·Xv

(
µv + νu

))
dw

− 1

2

ˆ
B

(
|Xu|2µu + |Xu|2νv + |Xv|2µu + |Xv|2νv

)
dw

=
1

2

ˆ
B

(
|Xu|2 − |Xv|2

)(
µu − νv

)
+ 2Xu ·Xv

(
µv + νu

)
dw.

(2.27)

With this discussion we arrive at the following lemma.
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Lemma 2.1.9. Let X ∈ H1(B;R3). Then there holds for the first variation of X

as defined in Definition 2.1.6

∂DB(X,λ) = 0 for all λ ∈ C1(B̄;R2), (2.28)

if and only if X is conformal, i.e.

|Xu|2 = |Xv|2, Xu ·Xv = 0 in B. (2.29)

Proof. Assume first (2.28) holds. Choose arbitrary ζ, η ∈ C∞c (B) and determine

functions f, g ∈ C∞(B̄) solving

∆f = ζ, ∆g = η in B, f = 0, g = 0 on ∂B.

Then µ := fu + gv, ν = −fv + gu are of class C∞(B̄), and satisfy

µu − νv = ζ, µv + νu = η.

Testing (2.28) with this particular choice of λ = (µ, ν) we see with (2.27)

0 = ∂DB(X,λ)

=
1

2

ˆ
B

(
|Xu|2 − |Xv|2

)(
µu − νv

)
+ 2Xu ·Xv

(
µv + νu

)
dw

=
1

2

ˆ
B

(
|Xu|2 − |Xv|2

)
ζ + 2Xu ·Xv η dw.

But since ζ, η were arbitrarily chosen, we infer that |Xu|2−|Xv|2 = 0, and Xu ·Xv =

0 almost everywhere in B.

Conversely, assume X satisfies the conformality relations (2.29). But (2.27) implies

for all µ, ν ∈ C1(B̄)

0 =
1

2

ˆ
B

(
|Xu|2 − |Xv|2

)(
µu − νv

)
+ 2Xu ·Xv

(
µv + νu

)
dw = ∂DB(X,λ),

where λ = (µ, ν).
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By aid of this lemma we conclude

Lemma 2.1.10. Every solution X of (P(Γ)) is conformal (2.8) in B.

Proof. Consider σε : τε(B̄) → B̄ as above. Since B and τε(B) are diffeomorphic,

Riemann’s mapping theorem [1] implies that there exists a conformal map κε : B →
τε(B). By Caratheodory’s theorem [5] κε can be extended to a homeomorphism

from B̄ onto τε(B̄). Define Zε := X ◦σε : τε(B̄)→ R3, and Yε := Zε ◦κε : B̄ → R3.

By conformal invariance of Dirichlet’s integral (2.4), we have

DB(Yε) = Dτε(B)(Zε).

Now assume X solves (P(Γ)). Then X ∈ C(Γ), and X minimises Dirichlet’s

integral (2.3) in B. Hence

DB(X) ≤ DB(Yε) = Dτε(B)(Zε).

Therefore, ∂DB(X,λ) = 0 for all λ ∈ C1(B̄;R2). By Lemma 2.1.9 we thus obtain

that X satisfies the conformality relations (2.8).

2.1.10 Plateau’s Boundary Condition

We derive that solutions to Plateau’s problem map ∂B topologically onto Γ. We

closely follow Hildebrandt [13].

Lemma 2.1.11. Every conformal (2.8) minimal surface X of class C(Γ) maps ∂B

topologically onto Γ.

Proof. Since X|∂B is weakly monotonic, it suffices to prove that X|∂B is injective.

Suppose by contradiction that this does not hold. Then we could find an arc

C = {eiθ
∣∣ θ1 < θ < θ2} for some θ1, θ2 ∈ R, such that X maps C onto a single

point P ∈ R3, i.e.

X(C) = P.

By Schwarz’s reflection principle [1] we can extend X to a harmonic map across

27



C. Differentiating X in tangential direction would then yield

d

dθ
X(eiθ) = 0,

and thus by conformality of X we would then find ∇X ≡ 0 on C. This implies

∇X ≡ 0 in B. Hence X ≡ P in B, contradicting X ∈ C(Γ).

2.1.11 Solution of Plateau’s Problem

We can now combine the previous results to formulate the main existence theo-

rem.

Theorem 2.1.12. Let Γ ⊂ R3 be a closed Jordan curve. Assume C(Γ) as defined

in (2.10) is non-empty. Then the minimisation problem (P(Γ)) has at least one

solution. Moreover, every surface X solving (P(Γ)) satisfies

i. X ∈ C2(B) ∩ C0(B̄),

ii. X is harmonic (2.7) and conformal (2.8) in B,

iii. X maps ∂B topologically onto Γ (2.9).

In particular, any closed rectifiable curve Γ ⊂ R3 bounds at least one disc-type

minimal surface, see Definition 2.1.1.

Proof. Firstly there exists at least one solution by Theorem 2.1.7. Therefore,

assume X ∈ C(Γ) solves (P(Γ)).

Since X minimises the Dirichlet integral, equation (2.21) is satisfied, and thus by

Lemma 2.1.8 ∆X = 0 weakly. But with Weyl’s Lemma (Lemma 2 in [35]), we

even find that X ∈ C2(B;R3) and X is harmonic in a classical sense. Moreover

by definition of C(Γ) (2.10) there holds X|∂B ∈ C0(∂B;R3). Thus with the maxi-

mum principle for harmonic functions [19] we infer X ∈ C0(B̄;R3). Therefore we

conclude X ∈ C2(B;R3) ∩ C0(B̄;R3).

By Lemma 2.1.10 X satisfies the conformality relations (2.8) in B.

Finally by Lemma 2.1.11 we even obtain that X satisfies (2.9), i.e. X is of the

type of the disc.
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Let us remark that by (2.11) any solution X of the minimisation problem (P(Γ))

is a surface of least area in C(Γ).

2.1.12 A-priori Bound

As a final remark, we state the isoperimetric inequality for minimal surfaces The-

orem III.3.5 in Courant [3].

Theorem 2.1.13. Let Γ ⊂ R3 be a rectifiable Jordan curve of finite length L(Γ) <

∞. Then any X ∈ C(Γ) (2.10) solving (2.7)–(2.9) satisfies the estimate

D(X) ≤ (L(Γ))2

4π
, (2.30)

where D is the Dirichlet integral (2.3).

Equation (2.30) implies that minimal surfaces bounded by rectifiable Jordan curves

admit a finite Dirichlet integral. A nice proof can be found in do Carmo [2].

2.2 H-Surfaces

In the previous section we studied surfaces X bounded by a prescribed Jordan

curve Γ in R3 whose mean curvature vanishes. It is now natural to ask: upon

prescribing in addition to a Jordan curve a value H 6= 0 for the mean curvature,

are there are surfaces X bounded by Γ with mean curvature H? Such surfaces,

we will call H-surfaces.

Throughout Section 2.2 we consider a Jordan curve Γ ⊂ R3, and we let H ∈ R
be some constant value. Again we can parametrise the problem by introducing

isothermal coordinates over the disc. Determine a surface X : B̄ → R3 of the

form

X(u, v) = (X1(u, v), X2(u, v), X3(u, v)),
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satisfying a system of nonlinear differential equations

∆X = 2HXu ∧Xv in B (2.31)

|Xu|2 = |Xv|2, Xu ·Xv = 0 in B (2.32)

X|∂B : ∂B → Γ is a homeomorphism of ∂B onto Γ. (2.33)

A surface X solving (2.31)–(2.33) arises as a soap bubble, i.e. as a surface of

least area enclosing a given volume. We may restrict all considerations to curves

Γ contained in the unit ball around the origin in R3.

Remark 1. We may recognise equation (2.31) formally as the Euler–Lagrange equa-

tions associated to the functional

EH(X) :=
1

2

ˆ
B

|∇X|2 dw +
2H

3

ˆ
B

X ·Xu ∧Xv dw = D(X) + 2HV (X) (2.34)

for X ∈ C2(B;R3), where D is the Dirichlet integral as introduced in (2.3), and

V is the volume integral over B

V (X) :=
1

3

ˆ
B

X ·Xu ∧Xv dw. (2.35)

Indeed, we compute for ϕ ∈ C∞0 (B;R3)

d

dε
EH(X + εϕ)

∣∣∣
ε=0

=

ˆ
B

∇X · ∇ϕdw +
2H

3

ˆ
B

Xu ∧Xv · ϕ+ (Xu ∧ ϕv + ϕu ∧Xv) ·X dw

= −
ˆ
B

∆X · ϕdw +
2H

3

ˆ
B

Xu ∧Xv · ϕ− (Xu ∧ ϕ ·Xv + ϕ ∧Xv ·Xu) dw

= −
ˆ
B

∆X · ϕdw +
2H

3

ˆ
B

Xu ∧Xv · ϕ+ (Xu ∧Xv +Xu ∧Xv) · ϕdw

= −
ˆ
B

∆X · ϕdw + 2H

ˆ
B

Xu ∧Xv · ϕdw,

where we integrated by parts for the second equality, and used antisymmetry of

the exterior product in the third equality. Note that all boundary terms arising

with the integration by parts vanish due to the compact support of ϕ. Therefore

we see that critical points X ∈ C2(B;R3) for EH solve (2.31).
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We refrain from going into details of another existence proof, yet we want to

emphasise some properties of the functional under consideration [31].

Remark 2. i. V (X) is well-defined and trilinear on H1 ∩ L∞(B;R3).

ii. V is invariant under orientation preserving reparametrisations of X. Indeed,

let X ∈ H1 ∩ L∞(B;R3), and let τ ∈ C1(B̄;R2) be a diffeomorphism of B

onto τ(B) with det(∇τ) > 0. Define σ := τ−1 from τ(B) onto B, and let

Y := X ◦ σ ∈ H1 ∩ L∞(τ(B);R3). Then

V (Y ) =
1

3

ˆ
τ(B)

Yu ∧ Yv · Y dw

=
1

3

ˆ
B

Xu ∧Xv ·X det(∇σ ◦ τ)| det(∇τ)| dw

=
1

3

ˆ
B

Xu ∧Xv ·X det(∇σ ◦ τ) det(∇τ) dw

=
1

3

ˆ
B

Xu ∧Xv ·X det((∇σ ◦ τ)∇τ) dw

= V (X),

(2.36)

where we used the non-negativity of det(∇τ), multiplicativity of the deter-

minant, and the observation based on the chain rule

id = ∇id = ∇(σ ◦ τ) = (∇σ ◦ τ)∇τ.

iii. Let X ∈ C(Γ) ∩ C2(B;R3), where C(Γ) is as in (2.10). Then by Remark 1

we derive the weak formulation of (2.31)

d

dε
EH(X + εϕ)

∣∣∣
ε=0

=

ˆ
B

∇X∇ϕdw + 2H

ˆ
B

Xu ∧Xv · ϕdw

=

ˆ
B

(
−∆X + 2HXu ∧Xv

)
ϕdw = 0

(2.37)

for all ϕ ∈ H1
0 (B;R3). Moreover, for the weak form of the conformality

relations (2.32) we find by (2.36)

∂EH(X,λ) = ∂DB(X,λ) = 0 ∀λ ∈ C1(B̄;R2). (2.38)
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Remark 2 iii. means that formally we have that stationarity in the inner variations

and outer variations corresponds to solutions of (2.31) satisfying (2.32). However,

we had to assume a-priori sufficient regularity for the surface. To obtain the

analogue of Lemma 2.1.8 and Lemma 2.1.10 for H-surfaces, we first have to derive

some continuity properties of the volume functional.

2.2.1 The Volume Functional

Extending the volume functional continuously onto C(Γ) rests on the following

inequality (Theorem 2.5 in [23]).

Theorem 2.2.1. Let X, Y ∈ H1 ∩ L∞(B;R3) with X − Y ∈ H1
0 (B;R3). Then

|V (X)− V (Y )|2 ≤
(
D(X) +D(Y )

)3

36π
(2.39)

for D as in (2.3) and V as in (2.35).

Firstly note that combining Morrey’s result on ε-conformality 2.1.1 with (2.39) and

with the invariance of V under orientation-preserving reparametrisations (2.36)

yields

|V (X)− V (Y )|2 ≤
(
A(X) + A(Y )

)3

36π
,

for all X, Y ∈ H1 ∩ L∞(B;R3) with the property that there exists an oriented

diffeomorphism τ : B̄ → B̄ such that X|∂B = Y ◦ τ |∂B, see [31].

Secondly, Theorem 2.2.1 implies that the volume functional V is a continuous

functional in the norm topology of H1
0 (B;R3). However, V is not continuous with

respect to the weak topology on H1
0 (B;R3), confer [34].

Due to inequality (2.39) we can establish that the volume functional continuously

extends to H1
0 (B;R3). In a further step, we can also extend V onto C(Γ), confer

Wente’s approach in [34]. In particular, with Remark 2 iii. we thus arrive at the

following analogue of Lemmata 2.1.8 and 2.1.10.

Lemma 2.2.2. Let H ∈ R and let Γ ⊂ B ⊂ R3 be a closed Jordan curve. Let

X ∈ C(Γ) as defined in (2.10). Then X is conformal (2.32) and weakly solves

32



(2.31) if and only if

d

dε
EH(X + εϕ)

∣∣∣
ε=0

= 0 ∀ϕ ∈ H1
0 (B;R3),

∂EH(X,λ) = 0 ∀λ ∈ C1(B̄;R2).

2.2.2 Existence

With Lemma 2.2.2 we infer that minimisers of EH in C(Γ) weakly solve (2.31)–

(2.32). Let us denote by PH(Γ) the minimisation problem

Minimise EH(X) in the class C(Γ). (PH(Γ))

The existence of such minimisers has been derived under various geometrical as-

sumptions on Γ and H. Notably, Wente illustrated the existence of solutions to

PH(Γ) in [34] provided that H satisfies |H|√αΓ <
√
π

5
, where αΓ := infX∈C(Γ)A(X).

On the other hand, Hildebrandt obtained solutions to PH(Γ) whenever Γ ⊂
BR(0) ⊂ R3 and H satisfies |H|R ≤ 1, see [14]. Here we denote by BR(0) the

ball of radius R around the origin

BR(0) = {z ∈ R3| ‖z‖ < R}.

The following example based on Wente [34] demonstrates the differences between

these results.

Example 2.2.1. i. Assume Γ bounds a rectangle of length a and width b for

some a, b ∈ R. Then αΓ = ab, and thus Wente’s result [34] yields existence

of solutions to (PH(Γ)) whenever

|H| <
√
π

5ab
.

On the other hand, we note that the rectangle Γ lies in a ball of radius R =
√
a2+b2

2
by a simple geometrical consideration. Thus for this case Hildebrandt

[14] establishes existence provided that

|H| ≤ 2√
a2 + b2

.
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Thus, depending on the ratio of length to width, either Wente’s or Hilde-

brandt’s result yields better bounds.

ii. Now assume Γ = ∂B1(0). In this case, αΓ = π, and by Wente’s result

solutions exist whenever

|H| < 1

5
.

On the other hand, with Hildebrandt we obtain

|H| ≤ 1.

In particular, Heinz has demonstrated that for planar circles Hildebrandt’s

result cannot be improved [8].

However, let us now consider a distorted circle of contour Γε, obtained by

cutting off an arc of length ε2 and inserting a spike of height 2
ε
. Then

αΓ ≈ π + 1
2

2ε2

ε
= π + ε, and thus Wente yields existence for

|H| <
√
π

5
√
π + ε

→ 1

5
(ε→ 0).

On the other hand, Γε is contained in a ball of radius R = 1 + 1
ε
. Thus with

Hildebrandt we have solutions whenever

|H| ≤ ε(
ε+ 1

) → 0 (ε→ 0).

We conclude the discussion on the existence of H-surfaces by the remark that

Hildebrandt’s result can be obtained with similar variational methods as for the

classical Plateau problem, where we first introduce a suitable class of admissible

functions, normalise this class with a three-point condition and show coercivity

and weak lower semi-continuity of EH on this normalised class with respect to

H1(B;R3). We would then show that the surface X attaining the minimum is

a relative minimiser for the functional EH , and in particular with Lemma 2.2.2

we find that this solution X solves (2.31)–(2.33). For details we refer to Struwe’s

monograph [31], especially Theorem III.3.1.
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2.2.3 Continuity

Before discussing the boundary behaviour of surfaces whose existence has so far

been derived, we wish to point out a continuity property of H-surfaces.

Theorem 2.2.3. Any weak solution X of (2.31)–(2.33) is continuous on B̄.

The theorem is a direct consequence of the following result.

Theorem 2.2.4. Let ϕ, ψ ∈ H1(B;R3). Assume Z ∈ H1
0 (B;R3) weakly solves

∆Z = ϕu ∧ ψv + ψu ∧ ϕv in B.

Then Z ∈ C0(B̄;R3).

For a proof we refer the reader to Theorem III.5.1 in Struwe [31]. Here we apply

this theorem to derive Theorem 2.2.3 following [31].

Proof of Theorem 2.2.3. Write X = X0+Z where X0 ∈ C(Γ) (2.10) is a solution of

Plateau’s problem (2.7)–(2.9) and Z ∈ H1
0 (B;R3). Then by definition of C(Γ) and

by the maximum principle for harmonic functions [19] we infer X0 ∈ C0(B̄;R3).

Furthermore, Z weakly solves

∆Z = 2HXu ∧Xv in B.

By Theorem 2.2.4 with ϕ = ψ = X we have Z ∈ C0(B̄;R3). Thus we conclude

X ∈ C0(B̄;R3).
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Chapter 3

Boundary Regularity

In this chapter, we aim to discuss the boundary behaviour of minimal surfaces

and of H-surfaces. For later reference, we introduce the Hölder spaces and their

associated norm.

Let Ω ⊂ Rn open. Consider z : Ω → Rn, and let 0 < β ≤ 1. We first introduce

the Hölder semi-norm

[z]C0,β(Ω;Rn) := sup
w1,w2∈Ω,w1 6=w2

|z(w1)− z(w2)|
|w1 − w2|β

.

With this definition we arrive at the Hölder norm

‖z‖C0,β(Ω;Rn) := ‖z‖C0(Ω;Rn) + [z]C0,β(Ω;Rn),

‖z‖Cm,β(Ω;Rn) := ‖z‖Cm(Ω;Rn) +
∑
|α|=m

[Dαz]C0,β(Ω;Rn).

Then it is straightforward to define the Hölder spaces.

Definition 3.0.1 (Hölder spaces). The Hölder space with exponent β is defined

as

Cm,β(Ω;Rn) := {z ∈ Cm(Ω̄;Rn) | ‖z‖Cm,β(Ω;Rn) <∞}.

Remark 3. i. The Hölder spaces C0,β(Ω) are complete for 0 < β ≤ 1, see Satz

8.6.1 in [30].
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ii. For 0 ≤ β ≤ α ≤ 1 we have the embedding

C0,α(Ω) ↪→ C0,β(Ω),

where C0,0(Ω) = C0(Ω̄), confer Beispiel 8.6.1 in [30].

Finally, we introduce a notion for the regularity of a closed Jordan curve Γ ⊂ R3.

Recall that in Chapter 2 we have introduced the closed Jordan curve Γ ⊂ R3 as

an embedding of ∂B onto R3.

Definition 3.0.2. An open Jordan arc γ ⊂ R3 is said to be of class Cm (or of

class Cm,α, 0 < α < 1) for m ≥ 1, if there is a homeomorphism τ : R3 → R3 such

that

i. τ maps γ onto an interval I := {x = (0, 0, x3) ∈ R3| |x3| < M} for some

constant M > 0,

ii. τ ∈ Cm(R3) (or τ ∈ Cm,α(R3)),

iii. the Jacobian dτ is non-singular on R3.

A closed Jordan curve Γ is said to be of class Cm (or of class Cm,α) if Γ is a finite

union of open subarcs of class Cm (or Cm,α).

In case of a planar minimal surface, the three-point condition required for the

solution of Plateau’s problem is uniquely identified [22]. The surface X is of the

form

X(u, v) = (X1(u, v), X2(u, v), 0),

where X1(u, v) and X2(u, v) are respectively the real and the imaginary part of

an analytic function f , which maps the unit disc B conformally onto the interior

of Γ. The regularity of the Riemannian mapping f depends on the regularity of

the curve Γ, as has been outlined, amongst others, by Courant [3]. A first result

on this relation has been made by Paul Painlevé, stating that if the boundary

Γ is a regular curve of class Cm+2, then the mapping f is of class Cm(B̄;R3).

An improved result by Oliver Dimon Kellogg [16] reads as follows: For a regular

curve Γ of class Cm,α, where m ≥ 1 and 0 < α < 1, the mapping f is of class

Cm,α(B̄;R3).
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In 1951, Hans Lewy demonstrated the first analogous results for minimal surfaces

[17]. If the rectifiable curve Γ contains an open analytic regular arc γ, then the

surface X in B̄ can be generalised to a minimal surface beyond γ. This result has

been used by Johannes Nitsche in [22] to develop the analogue of Kellogg’s result

for minimal surfaces.

Theorem 3.0.1. If Γ is a regular Jordan curve of class Cm,α as defined in 3.0.2,

where m ≥ 1 and 0 < α < 1, then the surface X solving Plateau’s problem

(Definition 2.1.1) is of class Cm,α(B̄;R3).

There have been various approaches to demonstrate this theorem. Stefan Hilde-

brandt has shown the statement for m ≥ 4 [12, 15]. Erhard Heinz and Friedrich

Tomi have developed methods to prove the statement in case that m = 3 and

α = 0 [11, 9]. Both their approaches rely on elliptic regularity theory for nonlin-

ear partial differential equations. Finally, Nitsche approached the theorem from

another point of view, and in this sense proves the statement in its full generality

[21, 22]. Using analytic tools based on Lewy’s result, Nitsche starts his consid-

erations with the case m = 1, and develops thereon the cases m > 1. However,

it has to be remarked that Nitsche’s proof works for minimal surfaces, while the

methods employed by Hildebrandt and by Heinz and Tomi allow for a generalisa-

tion to surfaces with constant mean curvature. We will exploit the reasoning of

Heinz and Tomi to demonstrate Theorem 3.0.1 in the case of m = 2 for minimal

surfaces. We will then apply these methods to the case of H-surfaces.

3.1 Heinz and Tomi on the Boundary Behaviour

of Minimal Surfaces

Let Γ ⊂ R3 be a closed, rectifiable Jordan curve, and let H ∈ R. In the previ-

ous chapter, we have established the existence of a surface X : B̄ → R3 of class

C2(B) ∩ C0(B̄) satisfying the elliptic system (2.31)–(2.32) with boundary condi-

tions (2.33). In case that H = 0, these solutions are disc-type minimal surfaces; for

non-vanishing mean curvature H, these solutions represent H-surfaces bounded by

Γ. To establish the boundary regularity for surfaces X solving (2.31)–(2.33), we

follow the approach of Heinz and Tomi in [11].
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Let G be a bounded domain in the (u, v)-plane. We consider elliptic systems of

the form

∆X = f(u, v,X,∇X), (3.1)

where f : G × R3 × R6 → R3 is a map with the property that for each X ∈
H1(G;R3) the function f(u, v,X(u, v),∇X(u, v)) is measurable as a function of

(u, v). Moreover, we require f to satisfy

|f(u, v,X, p)| ≤ µ(‖X‖L∞)p2 (3.2)

for all (u, v) ∈ G, X, Y ∈ R3, p ∈ R6, and where µ : R → R is assumed to be

monotonically increasing and continuous.

A weak solution X for (3.1) of class H1(G) satisfies ‖X‖L∞(G) <∞ and

ˆ
G

(
∇X∇Z + f(u, v,X,∇X)Z

)
dw = 0 for all Z ∈ C∞c (G). (3.3)

3.1.1 A Regularity Result

In this section, we will prove a regularity result for weak solutions of (3.1), where

we follow the considerations of Tomi [32] and Struwe [29]. The result reads

Theorem 3.1.1. Let X ∈ H1(G;R3) weakly solve (3.1), where the right-hand side

f is measurable as a function of (u, v) and satisfies (3.2) with a monotonically

increasing, continuous µ. Assume that there exists some a ∈ R3 with

‖X − a‖L∞(G;R3)µ(‖X‖L∞(G;R3)) <
1

2
. (3.4)

Then X ∈ C1,β(G;R3) for all β with 0 < β < 1.

The proof relies on two results. The first lemma is due to Tomi [32].

Lemma 3.1.2. Let X ∈ H1(G;R3) weakly solve (3.1), where the right-hand side

f is measurable as a function of (u, v) and satisfies (3.2) with a monotonically

increasing, continuous µ. Assume X satisfies (3.4). Then X ∈ Cβ(G;R3) for all

β with 0 < β < 1
2
.
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Proof. Let w0 ∈ G and let r > 0 be such that B̄r(w0) ⊂ G. Let Y be the weakly

harmonic function in B̄r(w0) with Y |∂Br(w0) = X in a trace sense. We define

Z(w) :=

{
X(w)− Y (w) for w ∈ Br(w0),

0 else.

We note that Z satisfies (3.1) weakly in Br(w0) and has compact support in G.

In particular, Z is an admissible test function for (3.3). Thus from (3.2) and (3.3)

we obtainˆ

Br(w0)

|∇X|2 dw ≤
ˆ

Br(w0)

|∇X||∇Y |+ |∇X|2|Z|µ(‖X‖L∞(G;R3)) dw. (3.5)

Using the maximum principle for harmonic functions (p.72 in [26]) we obtain

‖Z‖L∞ ≤ 2‖X − a‖L∞ , where a is such that X satisfies (3.4). Thus, (3.4), (3.5)

and Young’s inequality yield(
1− 2‖X − a‖L∞µ(‖X‖L∞)

) ˆ
Br(w0)

|∇X|2 dw

≤ ε

2

ˆ

Br(w0)

|∇X|2 dw +
1

2ε

ˆ

Br(w0)

|∇Y |2 dw,

where ε > 0. We choose ε =
(
1− 2‖X − a‖L∞(G;R3)µ(‖X‖L∞(G;R3))

)
. Then

ˆ

Br(w0)

|∇X|2 dw ≤ κ

ˆ

Br(w0)

|∇Y |2 dw,

where κ =
(
1 − 2‖X − a‖L∞(G;R3)µ(‖X‖L∞(G;R3))

)−2
. But then Theorem 1.10.2

and Theorem 3.5.2 in Morrey [19] give that X ∈ Cβ(G;R3), where β = 1
2κ

.

We can apply the same argument for G = BR(η) for some sufficiently small R > 0

and some η ∈ G. With a = X(η) we then see that ‖X − a‖L∞(G;R3) is arbitrarily

close to zero, so that κ = 1 + δ is attained for any δ > 0. Thus X ∈ Cβ(G;R3) for

any 0 < β < 1
2
.

Based on Lemma 3 in Tomi [32], we state a result which allows us to represent X in
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terms of a harmonic function in a ball and the Green’s function for the ball.

Lemma 3.1.3. Let w0 ∈ G. Choose R > 0 such that B̄R(w0) ⊂ G. Let Y be a

harmonic function in BR(w0) coinciding with X on ∂BR(w0), and let G = G(w, z)

be the harmonic Green’s function for BR(w0). For w = (u, v) ∈ BR(w0) we then

have the representations

X(w) = Y (w) +

ˆ
BR(w0)

G(w, z)f
(
z,X(z),∇X(z)

)
dz (3.6)

and
∂X

∂u
(w) =

∂Y

∂u
(w) +

ˆ
BR(w0)

∂G

∂u
(w, z)f

(
z,X(z),∇X(z)

)
dz,

∂X

∂v
(w) =

∂Y

∂v
(w) +

ˆ
BR(w0)

∂G

∂v
(w, z)f

(
z,X(z),∇X(z)

)
dz.

(3.7)

For the proof we refer the reader to Theorem 1.17 in Vekua [33]. For the third

result we follow Struwe’s reasoning in [29].

Theorem 3.1.4. Let X ∈ H1∩L∞(G;R3) weakly solve (3.1), where the right-hand

side f is measurable as a function of (u, v) and satisfies (3.2) with a monotonically

increasing, continuous µ. Suppose X ∈ Cα for some α > 0 and assume X satisfies

(3.4). Then X ∈ C1,β for any β < 1.

Proof. Let w0 ∈ G and let R > 0. We split X = Y + Z on BR(w0), where

∆Y = 0 and Z ∈ H1
0 (BR(w0);R3). We note that X|∂BR(w0) = Y |∂BR(w0) since

Z ∈ H1
0 (BR(w0);R3). With the maximum principle [26] we infer that

sup
ζ,η∈BR(w0)

|Y (ζ)− Y (η)| ≤ sup
ζ∈∂BR(w0)
η∈BR(w0)

|Y (ζ)− Y (η)|

≤ sup
ζ,η∈∂BR(w0)

|Y (ζ)− Y (η)|

≤ sup
ζ,η∈BR(w0)

|X(ζ)−X(η)|

≤ CRα,

where C = [X]C0,α . Furthermore by choice of Y and Z there holds Z = X − Y , so
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that we have

sup
ζ,η∈BR(w0)

|Z(ζ)− Z(η)| ≤ 2 sup
ζ,η∈BR(w0)

|X(ζ)−X(η)| ≤ 2CRα. (3.8)

Using the splitting X = Y + Z and Campanato’s result (Satz 10.2.2 in [30]) we

estimate for 0 < r < R ≤ 1
ˆ
Br(w0)

|∇X|2 dw ≤ 2

ˆ
Br(w0)

|∇Y |2 dw + 2

ˆ
Br(w0)

|∇Z|2 dw

≤ C
( r
R

)3
ˆ
BR(w0)

|∇Y |2 dw + 2

ˆ
Br(w0)

|∇Z|2 dw

≤ C
( r
R

)3
ˆ
BR(w0)

|∇X|2 dw + C

ˆ
BR(w0)

|∇Z|2 dw.

Moreover, by (3.1), (3.2), (3.4) and (3.8) we find

ˆ
BR(w0)

|∇Z|2 dw =

ˆ
BR(w0)

f(u, v,X,∇X)Z dw

≤ C

ˆ
BR(w0)

|∇X|2dw sup
BR(w0)

|Z|

≤ CRα,

(3.9)

since X ∈ H1(G;R3). Thus for the non-decreasing function

Φ(r) :=

ˆ
Br(w0)

|∇X|2 dw, 0 < r ≤ 1,

there holds

Φ(r) ≤ C
( r
R

)3
Φ(R) + CRα, 0 < r < R ≤ 1. (3.10)

Campanato’s useful Lemma (Lemma 10.3.2 in [30]) yields

Φ(r) ≤ Crα, 0 < r ≤ 1.

Inserting this bound into (3.9) gives for 0 < r < R ≤ 1

ˆ
BR(w0)

|∇Z|2 ≤ CrαRα ≤ CR2α.
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Thus we obtain the improved bound

Φ(r) ≤ C
( r
R

)3
Φ(R) + CR2α, 0 < r < R ≤ 1.

By iterating we then arrive at

Φ(r) ≤ Crβ (3.11)

for any β < 3.

Campanato’s estimate, Poincaré’s inequality (Satz 10.2.2 and Satz 8.6.6 in [30]),

the maximum principle and monotonicity of the integral also imply that for any

0 < r < R ≤ 1 we find
ˆ

Br(w0)

|∇X−(∇X)r|2 dw

≤ 2

ˆ

Br(w0)

|∇Y − (∇Y )r|2 dw + 2

ˆ

Br(w0)

|∇Z − (∇Z)r|2 dw

≤ C
( r
R

)5
ˆ

BR(w0)

|∇Y − (∇Y )R|2 dw + C

ˆ

Br(w0)

|∇Z|2 dw

≤ C
( r
R

)5
ˆ

BR(w0)

|∇X − (∇X)R|2 dw + C

ˆ

BR(w0)

|∇Z|2 dw,

where (∇X)r =
ffl
Br(0)
∇X(w) dw. Similarly to (3.9) we have in view of (3.11)

ˆ
BR(w0)

|∇Z|2 dw ≤ C

ˆ
BR(w0)

|∇X|2 dw sup
BR(w0)

|Z| ≤ CRα+β

for any β < 3. Thus the function Ψ : (0, 1]→ R defined as

Ψ(r) :=

ˆ
Br(w0)

|∇X −
(
∇X)r|2 dw

satisfies

Ψ(r) ≤ C
( r
R

)5
Ψ(R) + CRα+β, 0 < r < R ≤ 1.
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Moreover there holds that

Ψ(r) ≤
ˆ
Br(w0)

|∇X −
(
∇X)R|2 dw ≤ Ψ(R).

Thus Ψ is non-decreasing. With Campanato’s useful Lemma (Lemma 10.3.2 [30])

we obtain

Ψ(r) ≤ Crα+β, 0 < r ≤ 1. (3.12)

We can then choose β < 3 so that α + β = 3 + 2δ > 3 for some δ > 0. Then by

Campanato’s embedding theorem (Satz 8.6.5 in [30]) we have in view of (3.12)

∇X ∈ L2,3+2δ ↪→ Cδ,

where

L2,3+2δ(G;R3) := {X ∈ L2(G;R3)| [X]L2,3+2δ(G;R3) <∞}

defines the Campanato space with semi-norm

[X]2L2,3+2δ(G;R3) := sup
w0∈G

0<r<min{1,diam G}

r−(3+2δ)

ˆ
Br(w0)∩G

|X −Xw0,r|2 dw

for Xw0,r :=
ffl
Br(w0)∩GX(w)dw, see Definition 8.6.3 in [30]. Equation (3.7) then

implies f(u, v,X,∇X) ∈ Cδ. From (3.1) we obtain ∆X ∈ Cδ. With Schauder’s

theory (Satz 10.5.1 in [30]) we infer

X ∈ C2,δ ↪→
⋂

0<β<1

C1,β.

With these statements at hand, we directly obtain Theorem 3.1.1.

3.1.2 First Main Result

We proceed with Heinz and Tomi [11]. We introduce polar coordinates r, ϕ with

u+ iv = reiϕ. We set

Dr :=
∂

∂r
, Dϕ :=

∂

∂ϕ
.
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Furthermore, we consider the domain

SR,Θ = {reiϕ
∣∣ R < r < 1, |ϕ| < Θ}

for 0 < R < 1, and 0 < Θ ≤ π. We then have

Theorem 3.1.5. Let X ∈ H1(SR,Θ;R3)∩C2(SR,Θ;R3)∩C0(S̄R,Θ;R3) be a solution

of

|∆X| ≤ α|∇X|2 (3.13)

for some constant α > 0. Moreover, we assume the following boundary conditions

Xk(e
iϕ) = 0 for |ϕ| ≤ Θ, k ∈ {1, 2}, (3.14)

and

lim
r→1

ˆ Θ̃

−Θ̃

|DrX3| dϕ = 0, (3.15)

for all Θ̃ with 0 < Θ̃ < Θ. Then there holds

X ∈
⋂

0<β<1

C1,β(S̄R̃,Θ̃)

for all R̃, Θ̃ with R < R̃ < 1 and 0 < Θ̃ < Θ.

Proof. Let G := {reiϕ
∣∣ R < r < R−1, |ϕ| < Θ}. Define each component of a

vector-valued function Y : G→ R3 as

Yk(re
iϕ) :=

{
Xk(re

iϕ) if r ≤ 1,

(2δk,3 − 1)Xk(
1
r
eiϕ) if r > 1,

for k ∈ {1, 2, 3}, where δk,3 denotes the Kronecker delta. Define further a : G→ R3

as

a :=

{
|∇Y |−2∆Y if ∇Y 6= 0 and r 6= 1,

0 else.

Then a is a measurable vector-valued function and |a| ≤ α due to (3.13). Moreover

by definition of a, we have that Y satisfies

∆Y = |∇Y |2a (3.16)
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for r 6= 1. We claim that Y is a weak solution of (3.16) in all of G. Indeed,

Y is continuous in G, and since X ∈ H1(SR,Θ;R3) we have
´
r 6=1
|∇Y |2 dw < ∞.

Thus Y ∈ H1(G;R3). We now derive the weak formulation satisfied by Y . Let

Z ∈ C∞c (G;R3). We choose s ∈ R such that R < s < 1. Then we obtain

ˆ
R<r<s

(
∇Y∇Z + |∇Y |2aZ

)
dw +

ˆ
1
s
<r< 1

R

(
∇Y∇Z + |∇Y |2aZ

)
dw

=

ˆ
R<r<s

(
−∆Y + |∇Y |2a

)
Z dw +

ˆ
1
s
<r< 1

R

(
−∆Y + |∇Y |2a

)
Z dw

+
[ ˆ Θ̃

−Θ̃

(
DrY

)
Zr dϕ

]s
r=R

+
[ ˆ Θ̃

−Θ̃

(
DrY

)
Zr dϕ

] 1
R

r= 1
s

=
[ ˆ Θ̃

−Θ̃

(
DrY

)
Zr dϕ

]s
r= 1

s

=
3∑

k=1

[ ˆ Θ̃

−Θ̃

(
DrYk

)
Zkr dϕ

]s
r= 1

s

,

for some suitable Θ̃ with 0 < Θ̃ < Θ. For the first equality we integrated by parts,

for the second we used that Y solves (3.16) where r 6= 1 and that Z has compact

support in G.

Note that for r > 1 we have

DrYk
(
reiϕ

)
= (1− 2δk,3)

1

r2
DrXk

(1

r
eiϕ
)
, k ∈ {1, 2, 3},

so that
2∑

k=1

∣∣∣[ ˆ Θ̃

−Θ̃

(
DrYk

)
Zkr dϕ

]s
r= 1

s

∣∣∣
≤

2∑
k=1

ˆ Θ̃

−Θ̃

|DrXk(se
iϕ)||Zk(seiϕ)− Zk(

1

s
eiϕ)|s dϕ

≤ C
(1

s
− s
)( ˆ Θ̃

−Θ̃

|DrX(seiϕ)|s dϕ
)
,
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where we used the mean value theorem [25]. Furthermore we have

∣∣∣[ ˆ Θ̃

−Θ̃

(
DrY3

)
Z3r dϕ

]s
r= 1

s

∣∣∣ =

ˆ Θ̃

−Θ̃

|DrX3(seiϕ)||Z3(seiϕ) + Z3(
1

s
eiϕ)|s dϕ

≤ Cs

ˆ Θ̃

−Θ̃

|DrX3(seiϕ)| dϕ → 0, (s→ 1),

where the limit is obtained using (3.15). Moreover, as X ∈ H1(SR,Θ;R3) and as

SR,Θ is a bounded domain, we have with Hölder’s inequality∣∣∣ˆ
SR,Θ

|∇X| dw
∣∣∣ ≤ C

( ˆ
SR,Θ

|∇X|2 dw
) 1

2 <∞,

so that for a sequence
(
sν)ν∈N with sν → 1 as (ν →∞) we have

( 1

sν
− sν

)(ˆ Θ̃

−Θ̃

|DrX(sνe
iϕ)|sν dϕ

)
→ 0 (ν →∞).

We conclude that by possibly passing to a subsequence, we have

ˆ
G

(
∇Y∇Z + |∇Y |2aZ

)
dw

= lim
s→1

(ˆ
R<r<s

(
∇Y∇Z + |∇Y |2aZ

)
dw +

ˆ
1
s
<r< 1

R

(
∇Y∇Z + |∇Y |2aZ

)
dw
)

= lim
s→1

( 3∑
k=1

[ ˆ Θ̃

−Θ̃

(
DrYk

)
Zkr dϕ

]s
r= 1

s

)
= 0,

that is, Y weakly solves (3.16) in G.

Now we can invoke Theorem 3.1.1 to conclude. Indeed, Y solves (3.1) with

f(u, v, Y,∇Y ) := a|∇Y |2. Thus (3.2) is satisfied for µ(s) := a which is continuous

and monotonically increasing as a constant function and uniformly bounded by α

by (3.13). Moreover, Y ∈ C0(Ḡ) since by assumption X is continuous on S̄R,Θ. We

can now cover Ḡ with sufficiently small balls Bε(η) for η ∈ G and some ε > 0. On

each ball choose b := Y (η). Then there holds ‖Y − b‖L∞(G;R3) <
1
2a

by continuity

of Y , i.e. (3.4) is satisfied. We therefore conclude Y ∈
⋂

0<β<1C
1,β(G;R3), and
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hence X ∈
⋂

0<β<1C
1,β(S̄R̃,Θ̃;R3) for all R̃, Θ̃ with R < R̃ < 1 and 0 < Θ̃ < Θ as

required.

Remark 4. Let us emphasise that the bound in (3.4) required for Theorem 3.1.1

can easily be obtained for minimal surfaces and H-surfaces. Indeed, the maximum

principle for harmonic functions directly implies a C0-bound on the solution vector

in terms of the boundary values in the case of minimal surfaces. Similarly, for H-

surfaces such a bound can be obtained by the maximum principle for sub-harmonic

functions, see Theorem III.3.1 in Struwe [31]. To see this, note that the admissible

class of H-surfaces is

CH(Γ) :=

{
X ∈ C(Γ)| ‖X‖L∞ ≤

1

|H|

}
,

where H has to satisfy |H|R ≤ 1 for Γ ⊂ BR(0) ⊂ R3. These H-surfaces then

satisfy ‖X‖L∞ ≤ R [31]. Considering the case R = 1 we note that choosing

f = 2HXu ∧Xv in (3.1) implies that µ ≡ H in order for f to comply with (3.2).

Hence (3.4) is fulfilled since

‖X‖L∞µ(‖X‖L∞) ≤ RH <
1

2
.

if we assume H < 1
2
, see Section 3.3.

3.1.3 Second Main Result

We proceed with Heinz and Tomi’s discussion in [11]. We consider a conformally

parametrised surface X = X(u, v) whose boundary is given by a regular curve of

class Cm for m ≥ 2. Concretely, let X : B̄ → R3 be a vector-valued function of

class C1(B;R3) ∩ C0(B̄;R3) satisfying

r|DrX| = |DϕX|, (3.17)

DrX ·DϕX = 0, (3.18)
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with boundary conditions

Xk(e
iϕ) = gk

(
X3(eiϕ)

)
for |ϕ| ≤ Θ, k ∈ {1, 2}, (3.19)(

X3(eiϕ)−X3(eiψ)
)
(ϕ− ψ) ≥ 0 for |ϕ| ≤ Θ, |ψ| ≤ Θ, (3.20)

where Θ ∈ R with 0 < Θ ≤ π. The functions gk : (−δ, δ) → R for k ∈ {1, 2} are

of class Cm
(
(−δ, δ)

)
, where δ is chosen such that {X3(eiϕ)

∣∣ |ϕ| ≤ Θ} ⊂ (−δ, δ).
With no loss of generality, we set

gk(0) = g′k(0) = 0 k ∈ {1, 2}. (3.21)

We set M(Θ) := {X(eiϕ)
∣∣ |ϕ| ≤ Θ} and we consider a transformation V defined

in a neighbourhood of M(Θ) such that Y = V ◦X satisfies for k ∈ {1, 2}

Yk := Xk − gk(X3), (3.22)

Y3 := X3 + h(X3)−1
(
g′1(X3)

(
X1 − g1(X3)

)
+ g′2(X3)

(
X2 − g2(X3)

))
, (3.23)

where

h(X3) := 1 + g′1(X3)2 + g′2(X3)2.

Note that we choose Θ > 0 sufficiently small, so that V is bijective in a neighbour-

hood of M(Θ) with a nowhere vanishing Jacobian. Then Y satisfies

Yk(e
iϕ) = 0 for |ϕ| ≤ Θ, k ∈ {1, 2}.

Lemma 3.1.6. Let X ∈ C1(B;R3) ∩ C0(B̄;R3) satisfy (3.17), (3.18), (3.19).

Consider the transformation V defined as above in (3.22)–(3.23) on a neighbour-

hood Ω of M(Θ). Choose R < 1 such that X(S̄R,Θ) ⊂ Ω. Then there holds for

Y : SR,Θ → R3 with Y (reiϕ) := V X(reiϕ) in SR,Θ

|DrY3| ≤ C
1

r

(
|DϕX|

3
4

(
|DϕY | − |DϕY3|

) 1
4 + |DϕX|

(
|Y1|+ |Y2|

))
(3.24)
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Proof. We have with (3.22), (3.23) and (3.18)

0 = −
2∑

k=1

g′k(X3)DrXkDϕX3 +
2∑

k=1

g′k(X3)DrXkDϕX3

=
2∑

k=1

(
DϕXk − g′k(X3)DϕX3

)
DrXk +

2∑
k=1

g′k(X3)
(
DrXk − g′k(X3)DrX3

)
DϕX3

=
2∑

k=1

DϕYkDrXk +
2∑

k=1

g′k(X3)DrYkDϕX3

=
2∑

k=1

DϕYkDrXk +
( 2∑
k=1

g′k(X3)DrYk + h(X3)DrX3

)
︸ ︷︷ ︸

=:Φ

DϕX3

=
2∑

k=1

DϕYkDrXk + ΦDϕX3.

Therefrom we obtain with Cauchy-Schwarz’s inequality and with (3.17)

|Φ||DϕX3| =
∣∣∣ 2∑
k=1

DϕYkDrXk

∣∣∣
≤
( 2∑
k=1

(DϕYk)
2
) 1

2 |DrX|

=
( 2∑
k=1

(DϕYk)
2
) 1

2 1

r
|DϕX|.

(3.25)

50



Moreover, the definition of Φ yields with (3.22), (3.23) and (3.17)

|Φ| =
∣∣ 2∑
k=1

g′k(X3)DrYk + h(X3)DrX3

∣∣
=
∣∣ 2∑
k=1

g′k(X3)
(
DrXk − g′k(X3)DrX3

)
+
(
1 +

2∑
k=1

g′k(X3)2
)
DrX3

∣∣
=
∣∣ 2∑
k=1

g′k(X3)DrXk +DrX3

∣∣
≤
∣∣ 2∑
k=1

g′k(X3)|DrXk|
∣∣+ |DrX3|

=
1

r

∣∣ 2∑
k=1

g′k(X3)|DϕXk|
∣∣+

1

r
|DϕX3|

=
1

r

∣∣ 2∑
k=1

g′k(X3)|(DϕYk + g′k(X3)DϕX3)|
∣∣+

1

r
|DϕX3|

≤ 1

r

∣∣ 2∑
k=1

g′k(X3)|DϕYk|
∣∣+

1

r

∣∣ 2∑
k=1

|g′k(X3)2DϕX3|
∣∣+

1

r
|DϕX3|

≤ C0
1

r

( 2∑
k=1

(DϕYk)
2
) 1

2 + C1
1

r
|DϕX3|

≤ C2
1

r

(( 2∑
k=1

(DϕYk)
2
) 1

2 + |DϕX3|
)
,

with positive constants C0, C1, C2. From this estimate we obtain with (3.25),

Young’s inequality and (3.22), (3.23)

Φ2 ≤ C2

r

(
|Φ|
( 2∑
k=1

(DϕYk)
2
) 1

2 + |Φ||DϕX3|
)

≤ 1

2
Φ2 +

1

2

C2
2

r2

2∑
k=1

(DϕYk)
2 +

C2

r2

( 2∑
k=1

(DϕYk)
2
) 1

2 |DϕX|

≤ 1

2
Φ2 +

1

2

C2
3

r2

( 2∑
k=1

(DϕYk)
2
) 1

2 |DϕX|,
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that is

|Φ| ≤ C3

r

( 2∑
k=1

(DϕYk)
2
) 1

4 |DϕX|
1
2 .

Combining this estimate with the following

2∑
k=1

(DϕYk)
2 = |DϕY |2 − |DϕY3|2

= (|DϕY |+ |DϕY3|)(|DϕY | − |DϕY3|)

≤ C|DϕX|(|DϕY | − |DϕY3|),

we obtain

|Φ| ≤ C
1

r
|DϕX|

3
4 (|DϕY | − |DϕY3|)

1
4 .

With (3.22) and (3.23) we have

DrY3 = h(X3)−1Φ +
2∑

k=1

d

dX3

(g′(X3)

h(X3)

)
(DrX3)Yk,

so that we conclude

|DrY3| ≤ C|Φ|+ C|DrX3|
∣∣∣ 2∑
k=1

yk

∣∣∣
≤ C

1

r
|DϕX|

3
4 (|DϕY | − |DϕY3|)

1
4 + C|DrX|

2∑
k=1

|yk|

≤ C
1

r

(
|DϕX|

3
4 (|DϕY | − |DϕY3|)

1
4 + |DϕX|

2∑
k=1

|yk|
)
.

The next lemma states a property on the behaviour of arc lengths after a nonlinear

transformation.

Lemma 3.1.7. Let X ∈ C1(B;R3) ∩ C0(B̄;R3) with

sup
0≤r≤1

ˆ Θ

−Θ

|DϕX(reiϕ)| dϕ <∞
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for some Θ with 0 < Θ ≤ π. Let Ω be a neighbourhood of X(S̄R,Θ) for 0 < R < 1.

Consider a continuously differentiable map U : Ω → R3. Let JU(z) denote the

Jacobian of U in z. Assume for all z ∈ {X(eiϕ)
∣∣ |ϕ| ≤ Θ} there holds

lim sup
r→1

ˆ Θ

−Θ

|DϕJU(z)X(reiϕ)| dϕ =

ˆ Θ

−Θ

|DϕJU(z)X(eiϕ)| dϕ. (3.26)

Then for Y (reiϕ) := UX(reiϕ), R ≤ r ≤ 1, |ϕ| ≤ Θ there holds

lim
r→1

ˆ Θ

−Θ

|DϕY (reiϕ)| dϕ =

ˆ Θ

−Θ

|DϕY (eiϕ)| dϕ <∞. (3.27)

Proof. Finiteness of the right-hand side in (3.27) follows by continuous differen-

tiability of U and X.

For given ε > 0 we can find δ(ε) with 0 < δ(ε) < 1 − R and a partition of the

interval [−Θ,Θ]

−Θ = ϕ0 < ϕ1 < ... < ϕl < ϕl+1 = Θ,

where ϕk+1 − ϕk < δ(ε) so that there holds

ϕk ≤ ϕ ≤ ϕk+1, 1− δ(ε) ≤ r ≤ 1,

and

|DϕY (reiϕ)− JV (X(eiϕk))DϕX(reiϕ)| ≤ ε|DϕX(reiϕ)| (3.28)

with k ∈ {1, ..., l} for l ∈ N. Integrating (3.28) yields∣∣∣ ˆ ϕk+1

ϕk

|DϕY (reiϕ)| dϕ−
ˆ ϕk+1

ϕk

|DϕJV (X(eiϕk))X(reiϕ)| dϕ
∣∣∣

≤ ε

ˆ ϕk+1

ϕk

|DϕX(reiϕ)| dϕ
(3.29)
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for 1− δ(ε) ≤ r ≤ 1 and k ∈ {1, ..., l}. Therefrom we obtain for 1− δ(ε) ≤ r ≤ 1

∣∣∣ˆ Θ

−Θ

|DϕY (reiϕ)|dϕ−
l∑

k=0

ˆ ϕk+1

ϕk

|DϕJV (X(eiϕk))X(reiϕ)| dϕ
∣∣∣

≤ ε

ˆ Θ

−Θ

|DϕX(reiϕ)| dϕ

≤ ε sup
0≤r≤1

ˆ Θ

−Θ

|DϕX(reiϕ)| dϕ

=: εM,

where M <∞ by assumption. Thus∣∣∣ ˆ Θ

−Θ

|DϕY (reiϕ)| dϕ−
ˆ Θ

−Θ

|DϕY (eiϕ)| dϕ
∣∣∣

≤
l∑

k=0

∣∣∣ˆ ϕk+1

ϕk

|DϕJV (X(eiϕk))X(reiϕ)| − |DϕJV (X(eiϕk))X(eiϕ)| dϕ
∣∣∣

+ 2εM.

(3.30)

By (3.26) and by semi-continuity of the arc length we find for each k ∈ {1, ..., l}

lim
r→1

ˆ ϕk+1

ϕk

|DϕJV (X(reiϕk))X(eiϕ)| dϕ =

ˆ ϕk+1

ϕk

|DϕJV (X(eiϕk))X(eiϕ)| dϕ.

Taking the limit r → 1 in (3.30) yields the claim.

We now state a theorem which extends the main result of the article on the bound-

ary behaviour of minimal surfaces of Heinz and Tomi [11].

Theorem 3.1.8. Let X ∈ H1(B;R3)∩C2(B;R3)∩C0(B̄;R3) satisfy (3.17), (3.18)

with boundary conditions (3.19),(3.20) where gk ∈ C2,α, 0 < α < 1, k ∈ {1, 2}.
Moreover, assume X solves

∆X = Hf(X,∇X) in B, (3.31)

where H = H(u, v) is a matrix whose entries are real, measurable and bounded

functions, and where f complies with (3.2) for a monotonically increasing con-

tinuous function µ. Finally, let Θ ∈ R be so that 0 < Θ ≤ π, and consider the
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transformation V as in (3.22), (3.23). Assume that for each |ϕ| ≤ Θ the Jacobian

matrices JV
(
X(eiϕ)

)
satisfy (3.26). Then for all δ with 0 < δ < Θ

i. there holds X ∈ C1,α(S̄0,δ;R3)

ii. if H ∈ Cα(B̄1) then there holds X ∈ C2,α(S̄0,δ;R3)

iii. if gk ∈ C3 for k ∈ {1, 2} then X ∈
⋂

0<β<1C
1,β(S̄0,δ;R3)

Proof. We choose R with 0 < R < 1 so that V given by (3.22), (3.23) is defined

on X(S̄R,Θ) and has non-vanishing Jacobian JV . We define Y : S̄R,Θ → R3 as

Y (reiϕ) := V X(reiϕ).

Claim 3.1.8.1. Y solves an inequality of the form

|∆Y | ≤ α|∇Y |2 (3.32)

for a constant α > 0 in SR,Θ.

Proof of Claim 3.1.8.1. Indeed, we have with (3.31) and (3.19) for k ∈ {1, 2}

∆Yk = ∆Xk −
(
g′′k(X3)

(
∇X3

)2
+ g′k(X3)∆X3

)
=

3∑
l=1

(
Hk,l − g′k(X3)H3,l

)
fl(X,∇X)− g′′k(X3)

(
∇X3

)2
.

(3.33)

Hence with (3.2) for k ∈ {1, 2}

|∆Yk| ≤ C|f(X,∇X)|+ C|∇X3

∣∣2 ≤ C|∇X|2. (3.34)

On the other hand, we find with (3.17), (3.18)

|∇X3|2 ≤
2∑

k=1

|∇Xk|2.

This implies by the non-negativity of the absolute value

|∇X3| ≤
( 2∑
k=1

|∇Xk|2
) 1

2 ≤
2∑

k=1

|∇Xk|.
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Thus from (3.19)

2∑
k=1

|∇Xk| ≤
2∑

k=1

|∇Yk|+ C0|∇X3| ≤
2∑

k=1

|∇Yk|+ C0

2∑
k=1

|∇Xk|,

for some positive constant C0 < 1. We may absorb the second term of the right-

hand side on the left hand side, yielding

2∑
k=1

|∇Xk| ≤ C1

2∑
k=1

|∇Yk|,

for C1 = 1
1−C0

> 0, so that

3∑
k=1

|∇Xk| ≤ C1

2∑
k=1

|∇Yk|+
2∑

k=1

|∇Xk| ≤ 2C1

2∑
k=1

|∇Yk|. (3.35)

Combining (3.35) with (3.34) yields the claim.

Now we can invoke Lemma 3.1.6 since all required assumptions are met. This

yields for R < r < 1 the estimate

ˆ Θ

−Θ

|DrY3(reiϕ)| dϕ

≤ C
1

r

ˆ Θ

−Θ

(
|DϕX(reiϕ)|

3
4

(
|DϕY (reiϕ)| − |DϕY3(reiϕ)|

) 1
4

+ |DϕX(reiϕ)|
(
|Y1(reiϕ)|+ |Y2(reiϕ)|

))
dϕ

≤ C

((ˆ Θ

−Θ

|DϕX(reiϕ)| dϕ
) 3

4
(ˆ Θ

−Θ

(
|DϕY (reiϕ)| − |DϕY3(reiϕ)|

)
dϕ
) 1

4

+

ˆ Θ

−Θ

|DϕX(reiϕ)|
(
|Y1(reiϕ)|+ |Y2(reiϕ)|

)
dϕ

)
,

(3.36)

where we used R < r < 1 and Hölder’s inequality. The boundary condition (3.20)

guarantees the finiteness of
´ Θ

−Θ
|DϕX(eiϕ)| dϕ; in particular by assumption (3.26)

for all JV (X(eiϕ)) we have

sup
R<r<1

ˆ Θ

−Θ

|DϕX(reiϕ)| dϕ ≤ C <∞. (3.37)
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Therefore we can invoke Lemma 3.1.7, yielding

lim
r→1

ˆ Θ

−Θ

|DϕY (reiϕ)| dϕ =

ˆ Θ

−Θ

|DϕY (eiϕ)| dϕ =

ˆ Θ

−Θ

|DϕY3(eiϕ)| dϕ, (3.38)

where we used the boundary conditions

Yk(e
iϕ) = 0 for |ϕ| ≤ Θ, k ∈ {1, 2}, (3.39)

occurring due to the slick choice of V .

Combining (3.36) with (3.37), (3.38) and (3.39) gives

lim sup
r→1

(ˆ Θ

−Θ

|DrY3(reiϕ)| dϕ
)4

≤ C lim sup
r→1

(ˆ Θ

−Θ

|DϕX(reiϕ)|
(
|Y1(reiϕ)|+ |Y2(reiϕ)|

)
dϕ

+
(ˆ Θ

−Θ

|DϕX(reiϕ)| dϕ
) 3

4
(ˆ Θ

−Θ

|DϕY (reiϕ)| dϕ−
ˆ Θ

−Θ

|DϕY3(reiϕ)| dϕ
) 1

4

)4

= C lim sup
r→1

(ˆ Θ

−Θ

|DϕX(reiϕ)| dϕ
)3(ˆ Θ

−Θ

(
|DϕY (reiϕ)| − |DϕY3(reiϕ)|

)
dϕ
)

≤ C
(ˆ Θ

−Θ

|DϕY3(eiϕ)| dϕ− lim inf
r→1

ˆ Θ

−Θ

|DϕY3(reiϕ)| dϕ
)

≤ 0,

implying

lim
r→1

ˆ Θ

−Θ

|DrY3(reiϕ)| dϕ = 0. (3.40)

We can finally reap the fruits of our earlier results. First note that Y = V X ∈
H1(SR,Θ;R3)∩C2(SR,Θ;R3)∩C0(S̄R,Θ;R3) satisfies the differential inequality (3.32)

with boundary conditions (3.39) and (3.40). Theorem 3.1.5 then gives

Y ∈
⋂

0<β<1C
1,β(S̄R̃,δ;R3) for all R̃, δ with R < R̃ < 1 and 0 < δ < Θ. Then by

definition of V (3.22), (3.23) we conclude i. and iii. in Theorem 3.1.8.

For ii. in Theorem 3.1.8 we introduce Zε := {w = (u, v)
∣∣ |w − eiϕ0| < ε, |w| < 1}

for |ϕ0| < Θ and arbitrary ε > 0. We assume now H ∈ Cα(B̄1). Statement i. in
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Theorem 3.1.8 gives

Xk ∈ C1,α(Z̄ε0 ;R3) (3.41)

for k ∈ {1, 2, 3}, 0 < ε0 < ε.

First consider k ∈ {1, 2}. By (3.33) we find ∆Yk ∈ Cα(Z̄ε0) due to (3.41). More-

over, (3.39) implies Yk(w) = 0 for w ∈ Z̄ε0 with |w| = 1. Thus estimates from

Schauder theory, see Chapter 6 in [6], yield Yk ∈ C2,α(Z̄ε1) for some 0 < ε1 < ε0.

Since gk ∈ C2,α we obtain that Xk = Yk + gk(X3) ∈ C2,α(Z̄ε1 ;R3) for k ∈ {1, 2}.

Now consider k = 3. Equation (3.40) implies DrY3(eiϕ) = 0 for |ϕ| < Θ. Thus we

infer from (3.23) that DrX3(eiϕ) is of class C1,α for |ϕ| < Θ since for k ∈ {1, 2}
we have shown Xk ∈ C2,α and we have assumed gk ∈ C2,α. So we obtain X3(eiϕ)

is of class Cα. Furthermore, we have ∆X3 ∈ Cα(Z̄ε0 ;R3) since H ∈ Cα(B̄1). With

Schauder theory [6] we conclude X3 ∈ C2,α(Z̄ε1) for 0 < ε1 < ε0.

Altogether we conclude X ∈ C2,α(Z̄ε1 ;R3), yielding statement ii. in Theorem

3.1.8.

3.2 Boundary Regularity for Minimal Surfaces

We can now investigate the boundary behaviour of minimal surfaces. With the

methods established so far we state

Theorem 3.2.1. Let Γ ⊂ R3 be a Jordan curve of class C2,α for some 0 <

α < 1, see Definition 3.0.2. Let X : B̄ → R3 be a minimal surface of class

C2(B;R3)∩C0(B̄;R3) bounded by Γ, that is X = X(u, v) ∈ C2(B;R3)∩C0(B̄;R3)

satisfies (2.7)–(2.9). Then X ∈ C2,α(B̄;R3).

Proof. First note that the isoperimetric inequality for minimal surfaces (2.30)

yields the uniform boundedness of the Dirichlet integral. Thus with (2.8) we find

that X ∈ H1(B;R3) ∩ C2(B;R3) ∩ C0(B̄;R3) satisfies (3.17), (3.18). Moreover

(2.7) suggests to choose H = 0 and f as the zero function on B in (3.31). With

this choice we see that the assumptions on H and f in Theorem 3.1.8 are fulfilled.

Furthermore Γ is assumed to be of class C2,α, thus it is rectifiable. Hence we

may approximate the curve with inscribed polygons. Since we can choose the
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approximation sufficiently fine, and since X maps the boundary of B onto Γ, the

components of X(eiϕ) are given by functions gk ∈ C2,α, k ∈ {1, 2} so that (3.19),

(3.20) hold. Hence we can find a transformation V as in (3.22), (3.23), with the

additional property that its Jacobian JV is constant. We can then invoke Theorem

III.3.4 in [3], which uses the harmonicity of X and the semi-continuity of the arc

length, to find

lim sup
r→1

ˆ ϕ2

ϕ1

|DϕJVX(reiϕ)| dϕ =

ˆ ϕ2

ϕ1

|DϕJVX(eiϕ)| dϕ

for any ϕ1, ϕ2 ∈ [−π, π) with ϕ1 < ϕ2.

Therefore we can use Theorem 3.1.8 to conclude the proof.

3.3 Boundary Regularity for H-Surfaces

In a final subsection we extend the considerations of Heinz and Tomi in [11] to

conclude with a statement on the boundary behaviour of H-surfaces.

Theorem 3.3.1. Let Γ ⊂ B ⊂ R3 be a Jordan curve of class C2,α for 0 < α < 1.

Let H ∈ R be such that |H| < 1
2
. Let X : B̄ → R3 be a surface of constant mean

curvature H of class C2(B;R3) ∩ C0(B̄;R3) bounded by Γ; that is X = X(u, v) ∈
C2(B;R3) ∩ C0(B̄;R3) satisfies (2.31)–(2.33). Then X ∈ C2,α(B̄;R3).

Proof. Note that we cannot apply the isoperimetric inequality for minimal surfaces

to obtain a uniform a-priori bound for Dirichlet’s integral. However, there exists

a variant for H-surfaces due to Heinz [7]. Indeed, there holds

1

2

ˆ
B

|∇X|2 dw ≤ 1

4π

1 + |H|
1− |H|

L(Γ)2 <∞,

where we refer to Theorem 3 in [7]. We infer with (2.32) that X ∈ H1(B;R3) ∩
C2(B;R3)∩C0(B̄;R3) satisfies (3.17), (3.18). Moreover, we choose H in (3.31) as

the identity matrix in R3,3, and we set f(X,∇X) := 2HXu ∧Xv. Then by (2.5)

we have that f satisfies (3.2) with µ(‖X‖L∞) = H. Furthermore, since X maps

the boundary of B onto Γ, the components of X(eiϕ) are given by functions gk ∈

59



C2,α, k ∈ {1, 2} so that (3.19), (3.20) hold. Hence we can find a transformation V

as in (3.22), (3.23). Finally since |H| < 1
2

we obtain the relation

lim sup
r→1

ˆ ϕ2

ϕ1

|DϕJVX(reiϕ)| dϕ =

ˆ ϕ2

ϕ1

|DϕJVX(eiϕ)| dϕ

for any ϕ1, ϕ2 ∈ [−π, π) with ϕ1 < ϕ2, as demonstrated in Theorem 1 in [7].

Therefore we can invoke Theorem 3.1.8 to conclude the desired regularity.

As a concluding remark I want to emphasise that the methods used in this chapter

are clearly not the most straight-forward way to reach the conclusion, nor do they

deliver the most general result, confer Theorem 3.0.1. Indeed the reasoning can

be simplified using more modern tools, as Struwe has demonstrated throughout

his research on minimal surfaces and elliptic regularity theory [31, 30, 29]. Using

differential geometrical considerations, we can transform minimal surfaces and H-

surfaces into an elliptic system with quadratic growth in the gradient (Theorem

I.5.1 and Theorem III.5.5 in [31]). Then the C2,α-regularity can be obtained by

Theorem 2.8 in [29]. Even though all these results lead in a simple and beautiful

way to the same conclusions, this thesis attempts to discuss Heinz and Tomi’s

approach as I understand it.

60



Bibliography

[1] Ahlfors, Lars Valerian: Complex Analysis. McGraw-Hill, Inc. (1979).

[2] Carmo, Manfredo Pedigao do: Differential Geometry of Curves and Surfaces.

Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1976).

[3] Courant, Richard: Dirichlet’s Principle, Conformal Mapping, and Minimal

Surfaces. Dover Publications, INC. Mineola, New York (2005).

[4] Douglas, Jesse: Solution of the problem of Plateau. Trans. Am. Math. Soc.

33, 263-321 (1931).

[5] Garnett, John B.; Marshall, Donald E.: Harmonic Measure. Cambridge Uni-

versity Press (2005).

[6] Gilbarg, David; Trudinger, Neil S.: Elliptic Partial Differential Equations of

Second Order, Springer Verlag, Berlin–Heidelberg–New York (2001).

[7] Heinz, Erhard: An Inequality of Isoperimetric Type for Surfaces of Constant

Mean Curvature. Arch. Rat. Mech. Anal. 33, 155–168 (1969).

[8] Heinz, Erhard: On the nonexistence of a surface of constant mean curvature

with finite area and prescribed rectifiable boundary. Arch. Rat. Mech. Anal.

35, 249–252 (1969).
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